[1]刘琼,杨纪远,张磊,等.基于Hypermesh的空气弹簧成型鼓模态分析[J].福建理工大学学报,2023,21(06):544-550.[doi:10.3969/j.issn.1672-4348.2023.06.006]
 LIU Qiong,YANG Jiyuan,ZHANG Lei,et al.Modal analysis of air spring forming drum based on Hypermesh[J].Journal of Fujian University of Technology;,2023,21(06):544-550.[doi:10.3969/j.issn.1672-4348.2023.06.006]
点击复制

基于Hypermesh的空气弹簧成型鼓模态分析()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第21卷
期数:
2023年06期
页码:
544-550
栏目:
出版日期:
2023-12-25

文章信息/Info

Title:
Modal analysis of air spring forming drum based on Hypermesh
作者:
刘琼杨纪远张磊商涛谢济兴
福建理工大学材料科学与工程学院
Author(s):
LIU Qiong YANG Jiyuan ZHANG Lei SHANG Tao XIE Jixing
School of Materials Science and Engineering,Fujian University of Technology
关键词:
成型鼓模态分析固有频率结构加强
Keywords:
forming drumsmodal analysisnatural frequencystructural strengthening
分类号:
TH164
DOI:
10.3969/j.issn.1672-4348.2023.06.006
文献标志码:
A
摘要:
为了研究空气弹簧成型鼓固有频率是否与电机激励频率产生共振,以外径320 mm 的成型鼓为研究对象,先利用SolidWorks 建立成型鼓的几何模型,并对几何模型进行模态分析前处理,再利用Op?tiStruct 求解器对成型鼓网格单元模型进行前六阶模态分析求解。研究结果表明:成型鼓结构加强前,其一阶模态的固有频率为20.90 Hz;结构加强后,一阶模态的固有频率为58.93 Hz,远离激励频率,不会产生共振造成破坏。通过模态分析进一步发现成型鼓优化前后的二三阶、四五阶模态分别近似相等,这表明成型鼓结构存在相邻固有频率相等的情况。该分析方法对成型鼓研发具有较好的指导作用。
Abstract:
In order to study whether the natural frequency of the air spring forming drum resonates with the excitation frequency of the motor, the forming drum with an outer diameter of 320 mm was taken as the research object. Firstly, the geometric model of the forming drum was established by SolidWorks, and the geometric model was pre-processed by modal analysis. Then, the OptiStruct solver was used to solve the first six-order modal analysis of the forming drum grid unit model. Results show that the natural frequency of the first-order mode of the forming drum is 20.90 Hz before the structure of the forming drum is strengthened. After the structure is strengthened, the natural frequency of the first-order mode is 58.93 Hz, which is far away from the excitation frequency and will not cause resonance and damage. Through modal analysis, it is further found that the second-order and third-order, fourth-order and fifth-order modes of the forming drum before and after optimization are approximately equal, respectively, which indicates that the adjacent natural frequencies of the forming drum structure are equal. The analysis method has a good guiding role in the research and development of the forming drum.

参考文献/References:

[1] 赵洪金,刘爱月. 小规格轮胎胶囊膨胀结构成型鼓的研制及应用[J]. 轮胎工业,2002,22(2):108-111.[2] 王玉新,祝毓琥,石则昌. 全折叠式六瓦轮胎成型鼓优化设计[J]. 天津大学学报,1990,23(1):57-67.[3] 孙树嵩,吴玩汉,吴声峰,等. 一种旋转式径向伸缩工程胎成型鼓:CN211165426U[P]. 2020-08-04.[4] 邓双丰. 具有间隙补偿功能的子午线轮胎成型鼓研究[D]. 天津:天津大学,2011.[5] 吴贤开,吴贤标,张首冠,等. 新型轴向伸缩式汽车轮胎成型模结构设计[J]. 模具工业,2021,47(6) :56-58.[6] 时文欣,高浩,罗高翔,等. 空间伸缩式轮胎成型鼓的设计及分析[J]. 青岛科技大学学报(自然科学版) ,2023,44(2) :89-95.[7] 李彦海. 轮胎成型鼓的动力学分析[J]. 中国科技纵横,2014(16):45-46.[8] 李小满,王一辉,王伟,等. 地铁车辆牵引电机定子模态分析与试验验证[J]. 电力机车与城轨车辆,2023,46(3):38-42.[9] FRIIS T,TARP M,KATSANOS E I,et al. Best linear approximation of nonlinear and nonstationary systems using Operational Modal Analysis[J]. Mechanical Systems and Signal Processing,2021,152:107395.[10] 郭宗和,王克杰,亓洪亮. 一类变拓扑并联机构轮胎成型鼓研究[J]. 机械科学与技术,2009,28(11):1429-1434.[11] 谢柯强,李阁强,彭建军,等. 双圆弧斜齿齿轮泵转子系统模态分析[J]. 机械设计与制造,2022(11):158-163.

更新日期/Last Update: 2023-12-25