[1]刘丽桑,郭凯琪,陈健,等.基于VMD-MWOA-ELM的日前光伏功率预测[J].福建工程学院学报,2023,21(03):269-276.[doi:10.3969/j.issn.1672-4348.2023.03.011]
 LIU Lisang,GUO Kaiqi,CHEN Jian,et al.Prediction of day-ahead photovoltaic power generation based on VMD-MWOA-ELM[J].Journal of FuJian University of Technology,2023,21(03):269-276.[doi:10.3969/j.issn.1672-4348.2023.03.011]
点击复制

基于VMD-MWOA-ELM的日前光伏功率预测()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第21卷
期数:
2023年03期
页码:
269-276
栏目:
出版日期:
2023-06-25

文章信息/Info

Title:
Prediction of day-ahead photovoltaic power generation based on VMD-MWOA-ELM
作者:
刘丽桑郭凯琪陈健郭琳
福建工程学院电子电气与物理学院
Author(s):
LIU Lisang GUO Kaiqi CHEN Jian GUO Lin
School of Electronic, Electrical Engineering and Physics, Fujian University of Technology
关键词:
相关性分析变分模态分解多策略改进的鲸鱼优化算法极限学习机光伏发电功率预测
Keywords:
correlation analysis variational mode decomposition multi-strategy improved whale optimization algorithm extreme learning machine PV power prediction
分类号:
TM615
DOI:
10.3969/j.issn.1672-4348.2023.03.011
文献标志码:
A
摘要:
为了提高光伏发电功率的预测精度,提出一种结合变分模态分解、多策略改进的鲸鱼优化算法和极限学习机的光伏日前预测方法。利用变分模态分解影响光伏功率的关键气象因素,获得不同特征规律的本征模态分量,降解了数据的随机波动性,减少了噪声的影响。引入鲸鱼优化算法,利用多策略改进的鲸鱼优化算法(MWOA)对ELM 模型的权重和偏置系数进行优化,获得最终的光伏功率预测结果。仿真结果验证了所提方法的有效性与优越性。
Abstract:
In order to improve the prediction accuracy of photovoltaic power generation, a photovoltaic day -ahead prediction method combining variational mode decomposition, multi-strategy improvement whale optimization algorithm and extreme learning machine(ELM) was proposed. By utilizing variational mode decomposition to decompose key meteorological factors that affect photovoltaic power, the intrinsic mode components with different characteristic patterns were obtained, which degraded the random volatility of the data and reduced the impact of noise. The final photovoltaic power prediction results were obtained by introducing the multi-strategy improvement whale optimization algorithm (MWOA) to optimize the weights and bias coefficients of the ELM mode. The simulation results validated the effectiveness and superiority of the proposed method.

参考文献/References:

[1] HE Y T,GAO Q Z,JIN Y Y,et al. Short-term photovoltaic power forecasting method based on convolutional neural network[J]. Energy Reports,2022,8:54-62.[2] 左明乐,李培强. 考虑碳排放的综合能源系统经济优化调度[J]. 福建工程学院学报,2022,20(1):83-88.[3] 商立群,李洪波,侯亚东,等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制,2022,50(21):138-148.[4] 李雯,魏斌,韩肖清,等. 基于DPK-means和ELM的日前光伏发电功率预测[J]. 现代电力,2020,37(4):351-357.[5] 肖俊明,韦学辉,李燕斌. 基于BP神经网络和遗传算法的光伏功率预测的研究[J]. 计算机测量与控制,2015,23(2):392-393,405.[6] LIN W S,ZHANG B,LI H Y,et al. Multi-step prediction of photovoltaic power based on two-stage decomposition and BILSTM[J]. Neurocomputing,2022,504:56-67.[7] 文爽,马逸骋,孙志强. 基于GWO-EEMD-BP神经网络的光伏发电功率短期预测[J]. 中南大学学报(自然科学版),2022,53(12):4799-4808.[8] GAO B X,HUANG X Q,SHI J S,et al. Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks[J]. Renewable Energy,2020,162:1665-1683.[9] QU J Q,QIAN Z,PEI Y. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern[J]. Energy,2021,232:120996.[10] WANG R H,LI C S,FU W L,et al. Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(10):3814-3827.[11] LUO X,ZHANG D X,ZHU X. Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants[J]. Renewable Energy,2022,185:1062-1077.[12] 汤德清,朱武,侯林超. 基于CNN-LSTM-XGBoost模型的超短期光伏功率预测[J]. 电源技术,2022,46(9):1048-1052.[13] 张姗,冬雷,纪德洋,等. 基于NWP相似性分析的超短期光伏发电功率预测[J]. 太阳能学报,2022,43(4):142-147.[14] AN W B,ZHENG L W,YU J W,et al. Ultra-short-term prediction method of PV power output based on the CNN–LSTM hybrid learning model driven by EWT[J]. Journal of Renewable and Sustainable Energy,2022,14(5):053501.[15] 倪安安,王育飞,薛花. 基于混沌特征改进鲸鱼优化算法-相关向量机的超短期光伏发电输出功率预测\[J\]. 现代电力,2021,38(3):268-276.[16] 张荣升,刘丽桑,宋天文,等. 基于鲸鱼优化算法的配电网故障区段定位[J]. 福建工程学院学报,2021,19(4):378-384.[17] DKA Solar Centre. DKASC,Alice Springs[EB/OL]. http:∥dkasolarcentre. com. au/locations/alice-springs,2022.[18] WANG K J,QI X X,LIU H D. Photovoltaic power forecasting based LSTM-Convolutional Network[J]. Energy,2019,189:116225.

相似文献/References:

[1]成晓元,凌静秀,黄继辉,等.土仓压力与掘进参数相关性分析及预测模型[J].福建工程学院学报,2022,20(01):13.[doi:10.3969/j.issn.1672-4348.2022.01.003]
 CHENG Xiaoyuan,LING Jingxiu,HUANG Jihui,et al.Correlation analysis and prediction model of chamber earth pressure and excavation parameters[J].Journal of FuJian University of Technology,2022,20(03):13.[doi:10.3969/j.issn.1672-4348.2022.01.003]
[2]朱希,林俊德,施翔宇,等.基于VMD-SSA及误差补偿的风电功率超短期预测[J].福建工程学院学报,2023,21(06):573.[doi:10.3969/j.issn.1672-4348.2023.06.010]
 ZHU Xi,LIN Junde,SHI Xiangyu,et al.Ultra-short-term prediction of wind powerbased on VMD-SSA and error compensation[J].Journal of FuJian University of Technology,2023,21(03):573.[doi:10.3969/j.issn.1672-4348.2023.06.010]
[3]董志文,苏晶晶.基于VMD-MTF-CNN的故障电弧检测方法[J].福建工程学院学报,2024,22(04):371.[doi:10.3969/j.issn.2097-3853.2024.04.010]
 DONG Zhiwen,SU Jingjing.Arc fault detection method based on VMD-MTF-CNN[J].Journal of FuJian University of Technology,2024,22(03):371.[doi:10.3969/j.issn.2097-3853.2024.04.010]

更新日期/Last Update: 2023-06-25