参考文献/References:
[1] HE Y T,GAO Q Z,JIN Y Y,et al. Short-term photovoltaic power forecasting method based on convolutional neural network[J]. Energy Reports,2022,8:54-62.[2] 左明乐,李培强. 考虑碳排放的综合能源系统经济优化调度[J]. 福建工程学院学报,2022,20(1):83-88.[3] 商立群,李洪波,侯亚东,等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制,2022,50(21):138-148.[4] 李雯,魏斌,韩肖清,等. 基于DPK-means和ELM的日前光伏发电功率预测[J]. 现代电力,2020,37(4):351-357.[5] 肖俊明,韦学辉,李燕斌. 基于BP神经网络和遗传算法的光伏功率预测的研究[J]. 计算机测量与控制,2015,23(2):392-393,405.[6] LIN W S,ZHANG B,LI H Y,et al. Multi-step prediction of photovoltaic power based on two-stage decomposition and BILSTM[J]. Neurocomputing,2022,504:56-67.[7] 文爽,马逸骋,孙志强. 基于GWO-EEMD-BP神经网络的光伏发电功率短期预测[J]. 中南大学学报(自然科学版),2022,53(12):4799-4808.[8] GAO B X,HUANG X Q,SHI J S,et al. Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks[J]. Renewable Energy,2020,162:1665-1683.[9] QU J Q,QIAN Z,PEI Y. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern[J]. Energy,2021,232:120996.[10] WANG R H,LI C S,FU W L,et al. Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(10):3814-3827.[11] LUO X,ZHANG D X,ZHU X. Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants[J]. Renewable Energy,2022,185:1062-1077.[12] 汤德清,朱武,侯林超. 基于CNN-LSTM-XGBoost模型的超短期光伏功率预测[J]. 电源技术,2022,46(9):1048-1052.[13] 张姗,冬雷,纪德洋,等. 基于NWP相似性分析的超短期光伏发电功率预测[J]. 太阳能学报,2022,43(4):142-147.[14] AN W B,ZHENG L W,YU J W,et al. Ultra-short-term prediction method of PV power output based on the CNN–LSTM hybrid learning model driven by EWT[J]. Journal of Renewable and Sustainable Energy,2022,14(5):053501.[15] 倪安安,王育飞,薛花. 基于混沌特征改进鲸鱼优化算法-相关向量机的超短期光伏发电输出功率预测\[J\]. 现代电力,2021,38(3):268-276.[16] 张荣升,刘丽桑,宋天文,等. 基于鲸鱼优化算法的配电网故障区段定位[J]. 福建工程学院学报,2021,19(4):378-384.[17] DKA Solar Centre. DKASC,Alice Springs[EB/OL]. http:∥dkasolarcentre. com. au/locations/alice-springs,2022.[18] WANG K J,QI X X,LIU H D. Photovoltaic power forecasting based LSTM-Convolutional Network[J]. Energy,2019,189:116225.
相似文献/References:
[1]成晓元,凌静秀,黄继辉,等.土仓压力与掘进参数相关性分析及预测模型[J].福建工程学院学报,2022,20(01):13.[doi:10.3969/j.issn.1672-4348.2022.01.003]
CHENG Xiaoyuan,LING Jingxiu,HUANG Jihui,et al.Correlation analysis and prediction model of chamber earth pressure and excavation parameters[J].Journal of FuJian University of Technology,2022,20(03):13.[doi:10.3969/j.issn.1672-4348.2022.01.003]
[2]朱希,林俊德,施翔宇,等.基于VMD-SSA及误差补偿的风电功率超短期预测[J].福建工程学院学报,2023,21(06):573.[doi:10.3969/j.issn.1672-4348.2023.06.010]
ZHU Xi,LIN Junde,SHI Xiangyu,et al.Ultra-short-term prediction of wind powerbased on VMD-SSA and error compensation[J].Journal of FuJian University of Technology,2023,21(03):573.[doi:10.3969/j.issn.1672-4348.2023.06.010]
[3]董志文,苏晶晶.基于VMD-MTF-CNN的故障电弧检测方法[J].福建工程学院学报,2024,22(04):371.[doi:10.3969/j.issn.2097-3853.2024.04.010]
DONG Zhiwen,SU Jingjing.Arc fault detection method based on VMD-MTF-CNN[J].Journal of FuJian University of Technology,2024,22(03):371.[doi:10.3969/j.issn.2097-3853.2024.04.010]