[1]吴轲,黄晓生,林咏澍.LCC谐振式高升压比超声波换能器驱动[J].福建工程学院学报,2023,21(01):84-89.[doi:10.3969/j.issn.1672-4348.2023.01.013]
 WU Ke,HUANG Xiaosheng,LIN Yongshu.Drive of LCC resonant ultrasonic transducer with high boost ratio[J].Journal of FuJian University of Technology,2023,21(01):84-89.[doi:10.3969/j.issn.1672-4348.2023.01.013]
点击复制

LCC谐振式高升压比超声波换能器驱动()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第21卷
期数:
2023年01期
页码:
84-89
栏目:
出版日期:
2023-02-25

文章信息/Info

Title:
Drive of LCC resonant ultrasonic transducer with high boost ratio
作者:
吴轲黄晓生林咏澍
福建工程学院电子电气与物理学院
Author(s):
WU Ke HUANG Xiaosheng LIN Yongshu
School of Electronic, Electrical Engineering and Physics, Fujian University of Technology
关键词:
超声波电源LCC补偿网络低压差高升压比
Keywords:
ultrasonic power supply LCC compensation network low pressure difference high boost ratio
分类号:
TB552
DOI:
10.3969/j.issn.1672-4348.2023.01.013
文献标志码:
A
摘要:
针对传统换能器驱动电路带换能器负载和不带负载时压差过大的问题,提出了一种新的换能器驱动电源。在分析和推导补偿拓扑的基础上,使用LCC 补偿网络的输出与负载无关特性和后级电路谐振匹配网络设计使带空载时阻抗角接近0°,实现高升压比和低压差。通过对一款40 kHz 的换能器进行仿真和实验验证了方案的可行性,在高升压比的情况下,使换能器的压差降低至90 V,达到了减少压差的效果。
Abstract:
In order to solve the problem of excessive pressure difference between traditional transducer drive circuit with and without transducer load, a new transducer drive power supply was proposed. Based on the analysis and derivation of the compensation topology, the output of the LCC compensation network independent of the load and the resonant matching network of the later stage circuit was designed to make the impedance angle close to 0° with no load to achieve high boost ratio and low dropout. The feasibility of the scheme was verified by simulation and experiment on a 40 kHz transducer. In the case of high boost ratio, the pressure difference of the transducer is reduced to 90 V, which achieves the effect of reducing the pressure difference.

参考文献/References:

[1]闵锐. 超声波测距系统数字信号处理设计[D]. 合肥:合肥工业大学,2017.[2]涂晓凯,吴彦,李国锋,等. 一种高频超声波换能器驱动电路的设计[J]. 电子测量技术,2009,32(4):2325.[3]秦佳才,韩翔,肖光宗,等. 超声波换能器驱动电源的研究综述[J]. 电子设计工程,2020,28(9):135139.[4]向凤云. 超声波换能器可调驱动电源的研究[D]. 重庆:重庆理工大学,2012.[5]范思航. 超声波换能器驱动及前端接收电路研究[D]. 西安:西安石油大学,2014.[6]陈张平. 超声波换能器特性分析及其电源设计[D]. 杭州:杭州电子科技大学,2013.[7] YUAN T,DONG X X,SHEKHANI H,et al. Driving an inductive piezoelectric transducer with class E inverter[J]. Sensors and Actuators A:Physical,2017,261:219227.[8]汪群. 超声波测距系统硬件电路的研究与设计[D]. 合肥:合肥工业大学,2017.[9]高龙. 高精度超声波单探头测距与多探头定位技术的研究[D]. 沈阳:东北大学,2015.[10]翟宇鹏,张志杰,张浩. 基于小波变换的高精度测距系统设计及DSP实现[J]. 包装工程,2019,40(7):148155.[11]马姝亭. 基于LCCS型磁耦合谐振式DWPT系统控制策略研究[D]. 天津:天津工业大学,2021.[12]郑宏展. 基于LCC谐振的级联型高压直流电源设计与实现[D]. 广州:广东工业大学,2021.[13] YAN Z C,ZHANG Y M,ZHANG K H,et al. Faulttolerant wireless power transfer system with a dualcoupled LCCS topology[J]. IEEE Transactions on Vehicular Technology,2019,68(12):1183811846.[14] WANG X Q,XU J P,LENG M R,et al. A hybrid control strategy of LCCS compensated WPT system for wide output voltage and ZVS range with minimized reactive current[J]. IEEE Transactions on Industrial Electronics,2021,68(9):79087920.[15]CHEN Y F,ZHANG H L,PARK S J,et al. A switching hybrid LCCS compensation topology for constant current/voltage EV wireless charging[J]. IEEE Access,2019,7:133924133935.

更新日期/Last Update: 2023-02-25