参考文献/References:
[1]LI Q M,HAN Z C,WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2018,32(1):3538-3545.[2]CHEN M,WEI Z W,HUANG Z F,et al. Simple and deep graph convolutional networks[EB/OL]. 2020:arXiv:2007.02133[cs.LG]. https:∥arxiv.org/abs/2007.02133.[3]BO D Y,WANG X,SHI C,et al. Beyond low-frequency information in graph convolutional networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2021,35(5):3950-3957.[4]XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]∥ International Conference on Machine Learning. New York: ACM, 2018: 5453-5462.[5]RONG Y, HUANG W, XU T, et al. DropEdge: towards deep graph convolutional networks on node classification[C]∥International Conference on Learning Representations. Addis Ababa, Ethiopia: OpenReview.net, 2019.[6]XU B B,SHEN H W,CAO Q,et al. Graph convolutional networks using heat kernel for semi-supervised learning[C]∥Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. California:International Joint Conferences on Artificial Intelligence Organization,2019:1928-1934.[7]LIU M,GAO H Y,JI S W. Towards deeper graph neural networks[C]∥Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM,2020:338-348. [8]SEN P,NAMATA G,BILGIC M,et al. Collective classification in network data[J]. AI Magazine,2008,29(3):93. [9]TANG J,SUN J M,WANG C,et al. Social influence analysis in largescale networks[C]∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD09. New York:ACM Press,2009:807-816. [10]WU F, SOUZA A, ZHANG T, et al. Simplifying graph convolutional networks[C]∥International Conference on Machine Learning. California, 2019: 6861-6871.[11]DEFFERRARD M,BRESSON X,VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]∥NIPS16:Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016:3844-3852. [12]XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[C]∥International Conference on Learning Representations. New Orleans, 2019.[13]VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[C]∥International Conference on Learning Representations, Vancouver, 2018.[14]GASTEIGER J, BOJCHEVSKI A, GNNEMANN S. Predict then propagate: graph neural networks meet personalized PageRank[C]∥International Conference on Learning Representations, 2018.[15]HAMILTON W L,YING R,LESKOVEC J. Inductive representation learning on large graphs[EB/OL]. 2017:arXiv:1706.02216[cs.SI]. https:∥arxiv.org/abs/1706.02216.
相似文献/References:
[1]郭宝椿,李佐勇,陈健,等.融合长短时记忆与图结构学习的水库水位预测[J].福建工程学院学报,2024,22(01):90.[doi:10.3969/j.issn.2097-3853.2024.01.013]
GUO Baochun,LI Zuoyong,CHEN Jian,et al.Reservoir level prediction via integrating long short-term memory and graph structure learning[J].Journal of FuJian University of Technology,2024,22(01):90.[doi:10.3969/j.issn.2097-3853.2024.01.013]