[1]贾鹤鸣,李玉海,文昌盛,等.改进白骨顶鸡优化算法的WSN网络覆盖[J].福建工程学院学报,2022,20(06):561-566.[doi:10.3969/j.issn.1672-4348.2022.06.009]
 JIA Heming,LI Yuhai,WEN Changsheng,et al.Improved WSN network coverage with coot optimization algorithm[J].Journal of FuJian University of Technology,2022,20(06):561-566.[doi:10.3969/j.issn.1672-4348.2022.06.009]
点击复制

改进白骨顶鸡优化算法的WSN网络覆盖()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第20卷
期数:
2022年06期
页码:
561-566
栏目:
出版日期:
2022-12-25

文章信息/Info

Title:
Improved WSN network coverage with coot optimization algorithm
作者:
贾鹤鸣李玉海文昌盛孟彬饶洪华李政邦
三明学院
Author(s):
JIA Heming LI Yuhai WEN Changsheng MENG Bin RAO Honghua LI Zhengbang
Department of Information Engineering, Sanming University
关键词:
无线传感器覆盖白骨顶鸡优化算法随机反向学习策略复合突变策略
Keywords:
wireless sensor coverage coot optimization algorithm random reverse learning strategy compound mutation strategy
分类号:
TP393
DOI:
10.3969/j.issn.1672-4348.2022.06.009
文献标志码:
A
摘要:
为解决二维无线传感器网络随机部署产生的节点分布不均、覆盖率低的问题,提出一种融合元启发式算法的网络部署方案。该方案以节点部署空间作为约束条件、网络覆盖范围作为目标函数对二维网络覆盖模型进行数学建模。针对白骨顶鸡优化算法全局探索能力不强且在迭代后期容易陷入局部最优的缺点,该方案引入复合突变策略和随机反向策略对原算法进行改进。在二维网络覆盖模型进行的仿真测试结果表明:部署改进白骨顶鸡优化算法的二维无线传感器网络不仅网络覆盖率更高,节点也更加均匀,验证了改进白骨顶鸡优化算法解决节点部署问题的有效性和实用性。
Abstract:
In order to solve the problem of uneven node distribution and low coverage caused by random deployment of two-dimensional wireless sensor network, a network deployment scheme of fusion meta heuristic algorithm was proposed. Firstly, the node deployment space was used as the constraint and the network coverage was used as the objective function to mathematically model the two-dimensional network coverage model. Secondly, an improved coot optimization algorithm (COA) was proposed, which introduced a composite mutation strategy and a stochastic inverse strategy to improve the original algorithm in view of such shortcomings that the original algorithm’s global exploration ability is not strong and it is easy to fall into local optimization in the later iteration. Finally, simulation tests in the 2D network coverage model show that the WSN deployed by IOVA not only has higher network coverage, but also has more uniform nodes, which verifies the effectiveness and utility of ICAO in solving this problem.

参考文献/References:

[1] SONG R, XU Z C, LIU Y. Wireless sensor network coverage optimization based on fruit fly algorithm[J]. International Journal of Online Engineering (IJOE), 2018, 14(6):58.[2] TOLOUEIASHTIAN M, GOLSORKHTABARAMIRI M, RAD S Y B. An improved whale optimization algorithm solving the point coverage problem in wireless sensor networks[J]. Telecommunication Systems, 2022, 79(3):417-436.[3] HOFFMANN R, DE′SE′RABLE D, SEREDYN′SKI F. Cellular automata rules solving the wireless sensor network coverage problem[J]. Natural Computing, 2022, 21(3):417-447. [4] KHALAF O, ABDULSAHIB G, SABBAR B. Optimization of wireless sensor network coverage using the Bee Algorithm[J].Journal of Information Science and Engineering, 2020, 36(2): 377-386. [5] CAO L, YUE Y G, CAI Y, et al. A novel coverage optimization strategy for heterogeneous wireless sensor networks based on connectivity and reliability[J]. IEEE Access, 9:18424-18442.[6] 贾鹤鸣, 孟彬, 魏元昊, 等. 改进算术优化算法的无线传感器网络覆盖[J]. 闽南师范大学学报(自然科学版), 2022, 35(3):54-61.[7] NARUEII, KEYNIA F. A new optimization method based on COOT bird natural life model[J]. Expert Systems With Applications, 2021, 183:115352.[8] 贾鹤鸣, 刘宇翔, 刘庆鑫, 等. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5):1182-1192.[9] CHAKRAVARTHI S S, KUMAR G H. Optimization of network coverage and lifetime of the wireless sensor network based on Pareto optimization using non-dominated sorting genetic approach[J]. Procedia Computer Science, 2020, 172:225-228.〖JP〗[10] TIZHOOSH H R. Opposition-based learning:a new scheme for machine intelligence[C]∥International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). Vienna, Austria: IEEE, 2006: 695-701.[11] LONG W, JIAO J J, LIANG X M, et al. A random opposition-based learning grey wolf optimizer[J]. IEEE Access, 2019, 7: 113810-113825.[12] 朱海荣, 李平, 程剑. 基于改进PSO算法的WSN覆盖优化方法[J]. 计算机工程, 2011, 37(8):82-84.[13] 胡小平, 曹敬. 改进灰狼优化算法在WSN节点部署中的应用[J]. 传感技术学报, 2018, 31(5):753-758.

更新日期/Last Update: 2022-12-25