[1]许万强,林文彬,罗承浩,等.MICP技术研究进展及在海洋岩土工程的应用展望[J].福建工程学院学报,2022,20(06):511-519.[doi:10.3969/j.issn.1672-4348.2022.06.001]
 XU Wanqiang,LIN Wenbin,LUO Chenghao,et al.Research progress on microbially induced carbonate precipitation technology and prospects of its application in marine geotechnical engineering[J].Journal of FuJian University of Technology,2022,20(06):511-519.[doi:10.3969/j.issn.1672-4348.2022.06.001]
点击复制

MICP技术研究进展及在海洋岩土工程的应用展望()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第20卷
期数:
2022年06期
页码:
511-519
栏目:
出版日期:
2022-12-25

文章信息/Info

Title:
Research progress on microbially induced carbonate precipitation technology and prospects of its application in marine geotechnical engineering
作者:
许万强林文彬罗承浩姜乃灿高玉朋林威吴文葶
福建永强岩土股份有限公司
Author(s):
XU Wanqiang LIN Wenbin LUO Chenghao JIANG Naican GAO Yupeng LIN Wei WU Wenting
Fujian Yonking Geotechnical Co., Ltd.
关键词:
微生物诱导碳酸钙沉淀技术碳酸钙土体加固海洋岩土工程
Keywords:
MICP calcium carbonate soil reinforcement marine geotechnical engineering
分类号:
TU4
DOI:
10.3969/j.issn.1672-4348.2022.06.001
文献标志码:
A
摘要:
详细介绍了基于尿素水解的微生物诱导碳酸钙沉淀技术(MICP)基本原理;系统总结了MICP技术在土体加固、文物保护、混凝土裂缝修复、金属污染土修复和海洋岩土工程等领域的室内和现场试验研究;分析了环境pH值、温度、钙盐种类、加固土体颗粒粒径和灌浆方法等因素对MICP 技术的影响。MICP技术在岩土工程领域具有广阔的应用前景,但该技术在试验及在实际工程应用领域,特别是在海洋岩土工程领域还存在均匀性、环境适应性、耐久性、经济适用性等方面问题,未来需要对这些问题进行深入的探讨和研究。
Abstract:
The basic principle of microbial-induced carbonate precipitation technology (MICP technology) based on urea hydrolysis was introduced in detail, and the laboratory and field tests research of MICP technology in soil reinforcement, cultural relic protection, concrete crack repair, metal contaminated soil repair and marine geotechnical engineering were systematically summarized. The effects of environmental pH value, temperature, calcium salt type, particle size of reinforced soil and grouting method on MICP technology were analyzed. MICP technology has broad application prospects in the field of geotechnical engineering, but it still has problems in terms of uniformity, durability, and economic applicability in tests and practical engineering applications, especially in the field of marine geotechnical engineering. These issues need in-depth discussion and research in the future.

参考文献/References:

[1] 阎葆瑞, 张锡根. 微生物成矿学[M]. 北京:科学出版社, 2000: 19-28.[2] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6):1537-1548. [3] WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth:Murdoch University, 2004.[4] DE MUYNCK W, DE BELIE N, VERSTRAETE W. Microbial carbonate precipitation in construction materials:a review[J]. Ecological Engineering, 2010, 36(2):118-136.[5] IVANOV V, CHU J. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil insitu[J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(2):139-153.[6] 陈育民, 张书航, 丁绚晨, 等. 微生物加固钙质砂强度演化过程的环剪试验研究[J]. 土木与环境工程学报(中英文), 2022, 44(4):10-17.[7] 余振兴. 南海岛礁陆域高盐环境珊瑚砂微生物固化技术[D]. 泉州:华侨大学, 2019. [8] 李多. 微生物诱导碳酸钙沉淀固化沙漠风积砂的研究[D]. 杨凌:西北农林科技大学, 2018.[9] 沈泰宇, 汪时机, 薛乐, 等. 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学, 2019, 40(8):3115-3124.[10] 赵志峰, 孔繁浩. 土体环境对微生物诱导碳酸钙沉积加固海相粉土的影响研究[J]. 防灾减灾工程学报, 2018, 38(4):608-614, 692.[11] 王博. MICP加固粗颗粒盐渍土试验及机理分析[D]. 哈尔滨:哈尔滨工业大学, 2017.[12] 刘建兴, 李金柱, 谢新宇, 等. MICP固化淤泥土的强度试验研究[J]. 低温建筑技术, 2020, 42(5):17-20.[13] VAN PASSEN L A. Bio-mediated ground improvement: from laboratory experiment to pilot applications[J]. Proceeding of Geo-Frontiers; Advances in Geotechnical Engineering, 2011: 4099-108.[14] VAN PASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728.[15] ZHAN Q W, QIAN C X, YI H H. Microbial-induced mineralization and cementation of fugitive dust and engineering application[J]. Construction and Building Materials, 2016, 12:437-444. [16] GOMEZ MG, MARTINEZ B C, DEJONG J T, et al. Field-scale bio-cementation tests to improve sands[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2015, 168(3) :206-216.[17] 刘士雨, 俞缙, 曾伟龙, 等. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究[J]. 岩石力学与工程学报, 2020, 39(1):191-204.[18] LIU S Y, YU J, PENG X Q, et al. Preliminary study on repairing tabia cracks by using microbially induced carbonate precipitation[J]. Construction and Building Materials, 2020, 248:118611.[19] YANG Z, CHENG X H, LI M. Engineering properties of MICP-bonded sandstones used for historical masonry building restoration[C]. ∥Geo-frontiers Congress, March 13-16, 2011, Dallas, Texas, USA. Reston, VA, USA American Society of Civil Engineers 2011: 4031-4040. [20] 谭谦. 微生物用于石质文物破损修复的试验研究[D]. 北京:清华大学, 2017.[21] MINTO J M, TAN Q, LUNN R J, et al. ‘Microbial mortar’-restoration of degraded marble structures with microbially induced carbonate precipitation[J]. Construction and Building Materials, 2018, 180:44-54.[22] 何建宏, 郭红仙, 谭谦, 等. 微生物诱导碳酸钙修复汉白玉石梁裂缝试验研究[J]. 文物保护与考古科学, 2019, 31(6):46-53.[23] 张建伟, 黄小山, 边汉亮, 等. 基于脱脂奶粉联合诱导碳酸钙沉淀技术的古建筑修复加固[J]. 中国科技论文, 2021, 16(10):1035-1039, 1054.[24] 张越. 微生物用于砂土胶凝和混凝土裂缝修复的试验研究[D]. 北京:清华大学, 2014.[25] 王瑞兴, 钱春香. 微生物沉积碳酸钙修复水泥基材料表面缺陷[J]. 硅酸盐学报, 2008, 36(4):457-464.[26] JONGVIVATSAKUL P, JANPRASIT K, NUAKLONG P, et al. Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method[J]. Construction and Building Materials, 2019, 212:737-744. [27] SUN X, MIAO L, WU L, et al. The method of repairing microcracks based on microbiologically induced calcium carbonate precipitation[J]. Advances in Cement Research, 2020, 32(6): 262-272.[28] LIN WB, LIN W, CHENG X H, et al. Microbially induced desaturation and carbonate precipitation through denitrification:a review[J]. Applied Sciences, 2021, 11(17):7842.[29] ACHAL V, PAN X L, FU Q L, et al. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli[J]. Journal of Hazardous Materials, 2012, 201-202:178-184.[30] KUMARI D, PAN X L, LEE D J, et al. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature[J]. International Biodeterioration & Biodegradation, 2014, 94:98-102. [31] LI M, CHENG X H, GUO H X. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil[J]. International Biodeterioration & Biodegradation, 2013, 76:81-85.[32] ACHAL V, PAN X L, ZHANG D Y, et al. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation[J]. Journal of Microbiology and Biotechnology, 2012, 22(2):244-247.[33] 董博文, 刘士雨, 俞缙, 等. 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4):1104-1114.[34] 肖瑶, 邓华锋, 李建林, 等. 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究[J]. 岩土力学, 2022, 43(2):395-404.[35] 李昊, 唐朝生, 刘博, 等. 模拟海水环境下MICP固化钙质砂的力学特性[J]. 岩土工程学报, 2020, 42(10):1931-1939.[36] 刘渊, 张友良, 胡晋宁, 等. 模拟海水环境下MICP固化滨海粉细砂的试验研究[J]. 海南大学学报(自然科学版), 2021, 39(4):390-396.[37] 彭劼, 田艳梅, 杨建贵. 海水环境下MICP加固珊瑚砂试验[J]. 水利水电科技进展, 2019, 39(1):58-62.[38] 杨司盟, 彭劼, 温智力, 等. 浓缩海水作为钙源在微生物诱导碳酸钙加固砂土中的应用[J]. 岩土力学, 2021, 42(3):746-754. [39] CHENG L, SHAHIN M, MUJAH D. Influence of key environmental conditions on microbially induced cementation for soil stabilization[J] . Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1).[40] TANG C S, YIN L Y, JIANG N J, et al. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil:a review[J]. Environmental Earth Sciences, 2020, 79(5):1-23. [41] REBATA-LANDA V. Microbial activity in sediments: effects on soil behavior[M] . Georgia Institute of Technology, 2007:59-104.[42] 陈适, 方祥位, 申春妮, 等. 珊瑚砂微生物固化条件优化的正交试验研究[J]. 水利与建筑工程学报, 2019, 17(3):125-131.[43] 崔明娟, 郑俊杰, 章荣军, 等. 化学处理方式对微生物固化砂土强度影响研究[J]. 岩土力学, 2015, 36(S1):392-396. [44] GOROSPE C M, HAN S H, KIM S G, et al. Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558[J]. Biotechnology and Bioprocess Engineering, 2013, 18(5):903-908.[45] PAN X H, CHU J, YANG Y, et al. A new biogrouting method for fine to coarse sand[J]. Acta Geotechnica, 2020, 15(1):1-16. [46] ZHAO Q, LI L, LI C, et al. A full contact flexible mold for preparing samples based on microbial-induced calcite precipitation technology[J]. Geotechnical Testing Journal, 2014, 37(5) : 917-921.[47] WEN K J, LI Y, LIU S H, et al. Development of an improved immersing method to enhance microbial induced calcite precipitation treated sandy soil through multiple treatments in low cementation media concentration[J]. Geotechnical and Geological Engineering, 2019, 37(2):1015-1027.  [48] 谭谦, 郭红仙, 程晓辉. 微生物水泥砂浆的强度及耐久性试验研究[J]. 工业建筑, 2015, 45(7):42-47.

更新日期/Last Update: 2022-12-25