[1]张庆永,朱志亮.纯电动汽车机电复合制动控制策略分析[J].福建工程学院学报,2022,20(03):232-238+243.[doi:10.3969/j.issn.1672-4348.2022.03.005]
 ZHANG Qingyong,ZHU Zhiliang.Control strategy analysis of electromechanical composite braking for pure electric vehicles[J].Journal of FuJian University of Technology,2022,20(03):232-238+243.[doi:10.3969/j.issn.1672-4348.2022.03.005]
点击复制

纯电动汽车机电复合制动控制策略分析()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第20卷
期数:
2022年03期
页码:
232-238+243
栏目:
出版日期:
2022-06-25

文章信息/Info

Title:
Control strategy analysis of electromechanical composite braking for pure electric vehicles
作者:
张庆永朱志亮
福建工程学院机械与汽车工程学院
Author(s):
ZHANG Qingyong ZHU Zhiliang
School of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
纯电动汽车制动效果制动踏板能量回收效率遗传算法优化
Keywords:
electric vehicles braking effect brake pedal energy recovery efficiency genetic algorithm optimization
分类号:
U469.72
DOI:
10.3969/j.issn.1672-4348.2022.03.005
文献标志码:
A
摘要:
为提高电动汽车能量利用率、改善车辆制动效果,依照制动踏板的不同工作状态,设计了一种并联制动控制策略。在制动踏板踩下的复合制动工况,按照相关制动法规对机械制动和再生制动进行合理分配;在滑行制动工况,以能量回收效率为目标函数,运用遗传算法优化电机在不同转速下的最佳制动转矩。分别在典型道路工况和常规制动工况下对该策略进行实车测试,结果表明:在中国轻型汽车行驶工况(CLTC-P)下,该策略的节能贡献度可达25.93%,在滑行制动工况能量回收效率较原车提升64.07%,车辆制动距离也有明显缩减。
Abstract:
A parallel braking control strategy was designed based on the different working states of the brake pedal to improve the energy utilization rate and braking effect of electric vehicles. In compound braking conditions, the mechanical braking and regenerative braking were reasonably allocated in accordance with the braking regulations; in coasting braking conditions, the energy recovery efficiency was used as the objective function, and the genetic algorithm was used to optimize the optimal braking torque of the motor at different speeds. Finally, a real vehicle test was carried out to verify the effectiveness of the designed parallel braking control strategy. Test results show that the energy-saving contribution of this strategy can reach 25.93% under the Chinese automotive cycle (CLTC-P), the energy recovery efficiency in the coasting braking condition is increased by 64.07%, and the vehicle braking distance is also significantly shortened.

参考文献/References:

[1] 欧阳明高. 能源革命与新能源智能汽车[J]. 中国工业和信息化, 2019(11): 21-24.[2] 陈清泉, 高金燕, 何璇, 等. 新能源汽车发展意义及技术路线研究[J]. 中国工程科学, 2018, 20(1): 68-73.[3] GURUNATH K, VIJAYAKUMARI A. Regenerative braking control of induction motor in electric vehicles for optimal energyrecovery[M]∥Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, 2019: 229-238.[4] XU Z Q. Design and important technical analysis of electric vehicle braking energy recoverysystem[M]∥Recent Trends in Decision Science and Management. Singapore: Springer Singapore, 2020: 543-547.[5] LI Q C, CHIU Y J. Research and simulation analysis of brake energy recovery control strategy for pure electricvehicles[M]∥Advances in Intelligent Systems and Computing. Singapore: Springer Singapore, 2020: 103-110. [6] JIANG B, ZHANG X W, WANG Y X, et al. Regenerative braking control strategy of electric vehicles based on braking stabilityrequirements[J]. International Journal of Automotive Technology, 2021, 22(2): 465-473.[7] KUMAR M, EHSAN ASGAR M. Implementation of regenerative braking system inautomobiles[M]∥Lecture Notes in Mechanical Engineering. Singapore: Springer Singapore, 2020: 595-601. [8] HAN J, PARK Y, PARK Y. Cooperative regenerative braking control for front-wheel-drive hybrid electric vehicle based on adaptive regenerative brake torque optimization using under-steerindex[J]. International Journal of Automotive Technology, 2014, 15(6): 989-1000.[9] 杨海圣, 姬芬竹, 杨世春. 基于Simulink-Cruise联合仿真的制动能量回收系统研究[J]. 控制工程, 2018, 25(6): 1086-1090.[10] LI C, HE C K, YUAN Y, et al. Braking evaluation of integrated electronic hydraulic brake system equipped in electric vehicle[C]∥2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference. Chengdu, China: IEEE, 2019: 2361-2365.[11] MA Z W, SUN D X. Energy recovery strategy based on ideal braking force distribution for regenerative braking system of a four-wheel drive electric vehicle[J]∥IEEE Access. IEEE, 2020(8): 136234-136242.[12] 刘威, 祁宏钟, 刘新田, 等. 纯电动汽车串联式再生制动控制策略建模与仿真[J]. 轻工机械, 2019, 37(1): 70-73, 77.[13] VODOVOZOV V, PETLENKOV E, RAUD Z, et al. Torque control in blended antilock braking systems of electric vehicles[C]∥2018 16th Biennial Baltic Electronics Conference (BEC). Tallinn, Estonia. IEEE, 2018: 1-4. [14] 中华人民共和国工业和信息化部. 中国汽车行驶工况第1部分: 轻型汽车: GB/T 38146.1-2019[S]. 北京: 中国标准出版社, 2017.

相似文献/References:

[1]查云飞,宋金龙,张庆永,等.纯电动汽车动力系统参数匹配与优化研究[J].福建工程学院学报,2017,15(06):511.[doi:10.3969/j.issn.1672-4348.2017.06.001]
 Zha Yunfei,Song Jinlong,Zhang Qingyong,et al.Research on parameters matching and optimization of powertrain system for a pure electric vehicle[J].Journal of FuJian University of Technology,2017,15(03):511.[doi:10.3969/j.issn.1672-4348.2017.06.001]

更新日期/Last Update: 2022-06-25