参考文献/References:
[1] 季凯, 吴宁林. 土压平衡盾构土仓压力的应用对比分析[J]. 中国水运(下半月), 2021, 21(2): 145-146.[2] 王志云, 李守巨, 于贺. 盾构机土仓压力平衡系统混合建模方法研究进展[J]. 水利水电技术, 2019, 50(S1): 6-11.[3] 冯力, 许娇, 芦荣海, 等. 土压平衡盾构土仓压力设定及与地表沉降关系研究[J]. 市政技术, 2017, 35(4): 127-130.[4] 王洪新, 傅德明. 土压平衡盾构掘进的数学物理模型及各参数间关系研究[J]. 土木工程学报, 2006, 39(9): 86-90.[5] 上官子昌. 土压平衡盾构机密封舱压力控制机理模型及其实验研究[D].大连: 大连理工大学, 2011.[6] LIU X, SHAO C, MA H F, etal. Optimal earth pressure balance control for shield tunneling based on LS-SVM and PSO[J]. Automation in Construction, 2011, 20(4): 321-327.[7] 李守巨, 曹丽娟. 盾构机土仓压力控制模型及其参数辨识[J]. 煤炭学报, 2012, 37(2): 206-210.[8] 王洪新. 土压平衡盾构刀盘扭矩计算及其与盾构施工参数关系研究[J]. 土木工程学报, 2009, 42(9): 109-113.[9] 李锟, 田管凤, 马宏伟, 等. 土压平衡盾构掘进参数相关性分析及预测模型[J]. 科学技术与工程, 2021, 21(9): 3 814-3 821.[10] 王永军. 基于LSTM的深基坑开挖地表沉降预测研究[J]. 山西建筑, 2021, 47(14): 74-75, 140.[11] FAZAKA S-ANCAIS, MODREA A, VLASE S. Using the stochastic gradient descent optimization algorithm on estimating of reactivity ratios[J]. Materials, 2021, 14(16): 4764.[12] CHANDRIAH K K, NARAGANAHALLI R V. RNN/LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting[J]. Multimedia Tools and Applications, 2021, 80(17): 26 145-26 159.[13] 杨凯弘, 张茜, 周思阳. 盾构工程实测数据时序性质分析与掘进速率预测[J]. 机械科学与技术, 2021, 40(6): 835-839.
相似文献/References:
[1]叶建华,唐辉,罗奋翔,等.基于改进MobileNet的咖啡豆缺陷检测[J].福建工程学院学报,2023,21(03):257.[doi:10.3969/j.issn.1672-4348.2023.03.009]
YE Jianhua,TANG Hui,LUO Fenxiang,et al.Coffee bean defect detection based on improved MobileNet[J].Journal of FuJian University of Technology,2023,21(01):257.[doi:10.3969/j.issn.1672-4348.2023.03.009]
[2]许煜濠,刘石坚,康朝明,等.三维深度学习网络的几何差异感知能力[J].福建工程学院学报,2023,21(06):592.[doi:10.3969/j.issn.1672-4348.2023.06.013]
XU Yuhao,LIU Shijian,KANG Chaoming,et al.Geometric difference perception capabilities of 3D deep learning networks[J].Journal of FuJian University of Technology,2023,21(01):592.[doi:10.3969/j.issn.1672-4348.2023.06.013]
[3]郭宝椿,李佐勇,陈健,等.融合长短时记忆与图结构学习的水库水位预测[J].福建工程学院学报,2024,22(01):90.[doi:10.3969/j.issn.2097-3853.2024.01.013]
GUO Baochun,LI Zuoyong,CHEN Jian,et al.Reservoir level prediction via integrating long short-term memory and graph structure learning[J].Journal of FuJian University of Technology,2024,22(01):90.[doi:10.3969/j.issn.2097-3853.2024.01.013]
[4]于明源,周景亮,曾绍锋,等.基于YOLOv8改进的轴承表面缺陷检测方法[J].福建工程学院学报,2024,22(03):280.[doi:10.3969/j.issn.2097-3853.2024.03.011]
YU Mingyuan,ZHOU Jingliang,ZENG Shaofeng,et al.Improved bearing surface defect detection method based on YOLOv8[J].Journal of FuJian University of Technology,2024,22(01):280.[doi:10.3969/j.issn.2097-3853.2024.03.011]