[1]柯程扬、刘丽桑(通)、林赫、张荣升.基于PCA-KNN的金线莲种类识别[J].福建工程学院学报,2021,19(06):568-573.[doi:10.3969/j.issn.1672-4348.2021.06.011]
 KE Chengyang,LIU Lisang,LIN He,et al.Species identification of anoectochilus roxburghii based on PCA-KNN[J].Journal of FuJian University of Technology,2021,19(06):568-573.[doi:10.3969/j.issn.1672-4348.2021.06.011]
点击复制

基于PCA-KNN的金线莲种类识别()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第19卷
期数:
2021年06期
页码:
568-573
栏目:
出版日期:
2021-12-25

文章信息/Info

Title:
Species identification of anoectochilus roxburghii based on PCA-KNN
作者:
柯程扬、刘丽桑(通)、林赫、张荣升
福建工程学院电子电气与物理学院
Author(s):
KE Chengyang LIU Lisang LIN He ZHANG Rongsheng
School of Electronics, Electrical Engineering and Physics, Fujian University of Technology
关键词:
金线莲叶片特征提取PCA降维KNN算法分类
Keywords:
anoectochilus roxburghii feature extraction PCA dimension reduction KNN algorithm classification
分类号:
TP391.41
DOI:
10.3969/j.issn.1672-4348.2021.06.011
文献标志码:
A
摘要:
为了能对金线莲品系进行方便准确地识别,提出基于PCA ̄KNN 的金线莲叶片识别方法。通过图像预处理,获得特征较为明显的叶片区域,再提取纹理和颜色特征,进行特征融合,然后采用PCA降低特征维度,提高识别精度,最后通过训练KNN 分类器完成分类。以3 个品系的金线莲为例进行鉴别试验,结果表明,提出的识别方法与其它方法相比,正确识别率更高,达到98.4%,能准确识别不同种类的金线莲。
Abstract:
In order to facilitate the accurate identification of the strain of anoectochilus roxburghii, a PCA-KNN based identification method was proposed. Through image preprocessing, the blade regions with more obvious features were obtained, then the texture and color features were extracted for feature fusion, and then PCA was used to reduce the feature dimension and improve the recognition accuracy. Finally, the classification was completed by training the KNN classifier. Identification tests of 3 strains of anoectochilus roxburghii were carried out, and results show that compared with other methods, the proposed method can effectively improve the recognition rate up to 98.4%, and it can accurately identify different categories of anoectochilus roxburghii.

参考文献/References:

[1] 陈莹,任丽,严桂杰,等. 不同来源金线莲的HPLC指纹图谱[J]. 沈阳药科大学学报,2019,36(9):794-804. [2] LV T,TENG R D,SHAO Q S,et al. DNA barcodes for the identification of Anoectochilus roxburghii and its adulterants[J]. Planta,2015,242(5):1167-1174. [3] 王丹,张久旭,范晶,等. 基于图像处理技术的枸杞子商品规格等级评价方法研究[J]. 世界科学技术-中医药现代化,2020,22(8):2817-2823. [4] 王凤梅,卢文彪,陈仕妍. 基于灰度匹配模板的中药材显微图像识别[J]. 中国实验方剂学杂志,2019,25(11):167-172. [5] 王琳, 胡翠英, 庞其昌, 等. 基于自适应图像分割的中药光谱图像检测[J]. 激光与光电子学进展, 2013, 50(12): 70-76. [6] 谢文涌,柴琴琴,甘勇辉,等. 基于多特征提取和Stacking集成学习的金线莲品系分类[J]. 农业工程学报,2020,36(14):203-210. [7] SYAHRORINI S,SYAMSUDIN D,SAPUTRA D H R,et al. K-nearest neighbor algorithm to identify cucumber maturity with extraction of one-order statistical features and gray-level co-occurrence[J]. IOP Conference Series:Earth and Environmental Science,2021,819(1):012010. [8] 熊亚军,廖晓农,李梓铭,等. KNN数据挖掘算法在北京地区霾等级预报中的应用[J]. 气象,2015,41(1):98-104. [9] 耿丽娟,李星毅. 用于大数据分类的KNN算法研究[J]. 计算机应用研究,2014,31(5):1342-1344,1373. [10] 楚松峰,赵凤霞,方双,等. 基于PCA-SVM的红枣缺陷识别方法[J]. 食品与机械,2021,37(1):156-160,198. [11] 刘君君,王博亮,谢杰镇,等. SVM-KNN分类器在赤潮生物图像识别中的应用[J]. 心智与计算,2009,3(1):31-36. [12] 马娜,李艳文,徐苗. 基于改进SVM算法的植物叶片分类研究[J]. 山西农业大学学报(自然科学版),2018,38(11):33-38.

相似文献/References:

[1]戴福全,池生烨.金刚石线表面缺陷视觉检测方法[J].福建工程学院学报,2024,22(03):267.[doi:10.3969/j.issn.2097-3853.2024.03.009]
 DAI Fuquan,CHI Shengye.Visual inspection method for surface defects of diamond wire[J].Journal of FuJian University of Technology,2024,22(06):267.[doi:10.3969/j.issn.2097-3853.2024.03.009]

更新日期/Last Update: 2021-12-25