参考文献/References:
[1] 郝凤霞, 张诗葭. 长三角城市群交通基础设施、经济联系和集聚:基于空间视角的分析[J]. 经济问题探索, 2021(3): 80-91. [2] 冯思芸,施振佺,曹阳.基于全局时空特性的城市路网交通速度预测模型[J/OL].计算机工程:1-9[2021-07-24].https:∥doi.org/10.19678/j.issn.1000-3428.0061397.[3] 李燕妮. AI技术在智能交通辅助系统中优化控制体现[J]. 机械设计, 2021, 38(6): 160-161.[4] XU D W, WANG Y D, JIA L M, et al. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 287-302.[5] 张帆, 寻鲁宁, 孙纪新, 等. 基于ARIMA-SVM组合模型的道路交通伤害死亡率预测[J]. 现代预防医学, 2021, 48(10): 1742-1746. [6] ZHU J, HUANG C Q, YANG M, et al. Context-based prediction for road traffic state using trajectory pattern mining and recurrent convolutional neural networks[J]. Information Sciences, 2019, 473:190-201.[7] QIAO Y H, WANG Y, MA C X, et al. Short-term traffic flow prediction based on 1DCNN-LSTM neural network structure[J]. Modern Physics Letters B, 2021, 35(2): 2150042. [8] KOESDWIADY A, SOUA R, KARRAY F. Improving traffic flow prediction with weather information in connected cars: a deep learning approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9508-9517. [9] 熊振华,李恒凯.融合多特征神经网络的城市道路速度预测研究[J/OL].测绘科学:1-13[2021-07-19].http:∥kns.cnki.net/kcms/detail/11.4415.P.20201207.1p2.002.html. [10] 曹堉, 王成, 王鑫, 等. 基于时空节点选择和深度学习的城市道路短时交通流预测[J]. 计算机应用, 2020, 40(5): 88-93.[11] 李瑞敏,王长君.智能交通管理系统发展趋势[J/OL].清华大学学报(自然科学版):1-7[2021-07-24].https:∥doi.org/10.16511/j.cnki.qhdxxb.2021.26.023.[12] JIA T, YAN P G. Predicting citywide road traffic flow using deep spatiotemporal neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(5): 3101-3111.
相似文献/References:
[1]许邓艳、卢民荣.基于反向随机投影的神经网络改进算法[J].福建工程学院学报,2020,18(04):358.[doi:10.3969/j.issn.1672-4348.2020.04.010]
XU Dengyan,LU Minrong.An improved neural network algorithm based on reverse random projection[J].Journal of FuJian University of Technology,2020,18(06):358.[doi:10.3969/j.issn.1672-4348.2020.04.010]