[1]王航、罗敏峰.砂带磨削参数对材料去除深度的影响[J].福建工程学院学报,2021,19(06):524-531.[doi:10.3969/j.issn.1672-4348.2021.06.004]
 WANG Hang,LUO Minfeng.Influence of abrasive belt grinding parameters on the depth of material removal[J].Journal of FuJian University of Technology,2021,19(06):524-531.[doi:10.3969/j.issn.1672-4348.2021.06.004]
点击复制

砂带磨削参数对材料去除深度的影响()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第19卷
期数:
2021年06期
页码:
524-531
栏目:
出版日期:
2021-12-25

文章信息/Info

Title:
Influence of abrasive belt grinding parameters on the depth of material removal
作者:
王航、罗敏峰
福建工程学院机械与汽车工程学院
Author(s):
WANG Hang LUO Minfeng
School of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
砂带磨削材料去除深度离散元正交试验
Keywords:
abrasive belt grinding material removal depth discrete element orthogonal experiment
分类号:
TH161
DOI:
10.3969/j.issn.1672-4348.2021.06.004
文献标志码:
A
摘要:
为探究金属工件在砂带磨削加工中的材料去除机理,对砂带磨削系统简化后建立几何模型,并设置模型参数及运动建立了砂带磨削加工的离散元动态仿真。仿真结果表明:通过单因子试验研究不同的磨削参数对材料去除深度(material removal depth, MRD)的影响规律?通过正交试验得到不同磨削参数对MRD 的影响贡献率,其中砂带转速的影响最大、其次是砂带进给量,同时得到磨削参数的最优组合为工件进给量为0.5 mm,砂带转速为1 800 r/ min,工件速度为40 mm/ s,水平夹角为40°;最后通过实验验证仿真结果与结论的正确性。
Abstract:
In order to explore the material removal mechanism of metal workpieces in abrasive belt grinding, a geometric model was established after simplifying the abrasive belt grinding system; and the model parameters and movement were set up to establish a discrete element dynamic simulation of abrasive belt grinding. Simulation results show that the influence of different grinding parameters on the MRD(material removal depth) was studied by single factor experiment; the contribution rate of different grinding parameters on MRD was obtained by orthogonal experiments, among which the influence of belt speed was the largest, followed by that of the feed rate of the abrasive belt. The optimal combination of grinding parameters is that the workpiece feed is 0.5 mm, the belt’s rotation speed is 1 800 r/min, the workpiece speed is 40 mm/s, and the horizontal angle is 40°. Finally, the simulation results and conclusions were verified by experiments.

参考文献/References:

[1] 陈育辉. 步枪机匣表面机器人恒力砂带抛光技术研究[D]. 重庆: 重庆大学, 2014.[2] 黄云, 黄智. 现代砂带磨削技术及工程应用[M]. 重庆: 重庆大学出版社, 2009.[3] 刘月明, 何喆, 王荣全, 等. 钢轨试件砂带磨削行为试验研究[J]. 应用基础与工程科学学报, 2017, 25(2): 419-426.[4] XIAO G J, HUANG Y, CHEN G L, et al. Investigations on belt grinding of GH4169 nickel-based superalloy[J]. Advanced Materials Research, 2014, 1017: 15-20.[5] WU X J, YANG Y, TONG X, et al. The grey theory combining the taguchi method for the best parameters: a case study of polishing M300 steel[J]. Mathematical Problems in Engineering, 2019, 2019: 1-13.[6] 张阳. 基于鼓型接触轮的砂带磨抛研究与实验[D]. 长春: 吉林大学, 2018.[7] 薛亚军, 贺福强, 陈发江, 等. 基于离散元法的木质板材压制成形过程仿真与分析[J]. 林业机械与木工设备, 2021, 49(5): 52-57.[8] 张恒宇, 李艳洁, 刘春飞, 等. 基于DEM仿真与试验验证的双轴螺旋输送机结构优化分析[J]. 中国农业大学学报, 2019, 24(4): 148-156.[9] 陈彦超. 基于DEM螺旋输送机内颗粒运移规律研究[D]. 大庆: 东北石油大学, 2018: 15-30.[10] 贺一鸣, 向伟, 吴明亮, 等. 基于堆积试验的壤土离散元参数的标定[J]. 湖南农业大学学报(自然科学版), 2018, 44(2): 216-220.[11] 刘凡一, 张舰, 李博, 等. 基于堆积试验的小麦离散元参数分析及标定[J]. 农业工程学报, 2016, 32(12): 247-253.[12] 李永祥, 李飞翔, 徐雪萌, 等. 基于颗粒缩放的小麦粉离散元参数标定[J]. 农业工程学报, 2019, 35(16): 320-327.[13] 张晓芳. 超声辅助砂带磨削铝合金仿真与实验研究[D]. 泉州: 华侨大学, 2016.[14] 谢昊澄. 基于单磨粒仿真的焊缝磨削机器人恒力加工过程建模分析与工艺参数优化[D]. 天津: 天津理工大学, 2021.[15] GOWRI S, SHIREESHA K, KENNEDY X. Taguchi analysis in optimisation of belt grinding of stainless steel 304[J]. International Journal of Machining and Machinability of Materials, 2009, 5(1): 41-59.[16] 刘国兴, 任世彬. 田口方法与稳健性设计[J]. 电工电气, 2010(10): 53-57.

更新日期/Last Update: 2021-12-25