[1]李传生、曾寿金、许明三、刘广、何伟辉.应用于承载骨的梯度多孔支架力学性能研究[J].福建工程学院学报,2021,19(04):349-355.[doi:10.3969/j.issn.1672-4348.2021.04.007]
 LI Chuansheng,ZENG Shoujin,XU Mingsan,et al.Research on the mechanical properties of gradient porous scaffolds applied on load-bearing bones[J].Journal of FuJian University of Technology,2021,19(04):349-355.[doi:10.3969/j.issn.1672-4348.2021.04.007]
点击复制

应用于承载骨的梯度多孔支架力学性能研究()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第19卷
期数:
2021年04期
页码:
349-355
栏目:
出版日期:
2021-08-25

文章信息/Info

Title:
Research on the mechanical properties of gradient porous scaffolds applied on load-bearing bones
作者:
李传生、曾寿金、许明三、刘广、何伟辉
福建工程学院机械与汽车工程学院
Author(s):
LI ChuanshengZENG ShoujinXU MingsanLIU GuangHE Weihui
School of Mechanical & Automotive Engineering, Fujian University of Technology
关键词:
选区激光熔化梯度多孔支架三周期极小曲面力学性能
Keywords:
selective laser melting gradient porous scaffolds triply periodic minimal surfaces mechanical properties
分类号:
TB31;TN249
DOI:
10.3969/j.issn.1672-4348.2021.04.007
文献标志码:
A
摘要:
基于三周期极小曲面(TPMS)设计5种不同孔隙率梯度分布的梯度多孔支架,利用选区激光熔化(SLM)技术制造Ti6Al4V梯度多孔支架。该支架具有类似于人骨梯度多孔结构的梯度孔隙率。压缩测试结果表明,5种梯度多孔支架的弹性模量为8.75~13.88 GPa,抗压强度为219.48~ 528.21 MPa,符合承载骨的弹性模量和抗压强度要求。弹性模量和抗压强度都随着平均孔隙率P- (或边缘孔隙率PB )的增大而减小,P-对弹性模量和抗压强度的影响大于PB。采用Gibson-Ashby的拟合结果可以为承载骨的设计提供参考。
Abstract:
Gradient porous scaffolds with 5 different porosities that have gradient distributions were designed based on triply periodic minimal surfaces (TPMS), and Ti6Al4V gradient scaffolds were fabricated with selective laser melting (SLM) technology. The scaffold has the gradient porosity similar to the gradient porous structure of human bones. Compression test results show that the elastic modulus and compressive strength of scaffolds with five gradient porosities are 8.75~13.88GPa and 219.48~528.21MPa, which meet the elastic modulus and compressive strength requirements of load-bearing bones. Both elastic modulus and compressive strength decrease with the increase of P(or PB), and the effect of P on elastic modulus and compressive strength is greater than that of PB. The fitting results of Gibson-Ashby can provide reference for the design of load-bearing bones.

参考文献/References:

[1] 吴艳琳, 王勇, 乔丽英, 等. 选区激光熔化成型正六方柱体多孔TC4合金结构及力学性能研究[J]. 功能材料, 2018, 49(6):6080-6087, 6092.[2] 高芮宁, 熊胤泽, 张航, 等. SLM制备径向梯度多孔钛/钽的力学性能及生物相容性[J]. 稀有金属材料与工程, 2021, 50(1):249-254.[3] 李祥, 高芮宁, 熊胤泽, 等. 基于TPMS结构的多孔钛制备与表征[J]. 稀有金属材料与工程, 2020, 49(1):325-330.[4] KESHAVARZAN M, KADKHODAEI M, BADROSSAMAY M, et al. Investigation on the failure mechanism of triply periodic minimal surface cellular structures fabricated by Vat photopolymerization additive manufacturing under compressive loadings[J]. Mechanics of Materials, 2020, 140:103150.[5] MASKERY I, AREMU A O, PARRY L, et al. Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading[J]. Materials & Design, 2018, 155:220-232.[6] HAN C J, LI Y, WANG Q, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80:119-127.[7] YANG L, HAN C J, WU H Z, et al. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109:103843.[8] 高芮宁, 李祥. 径向梯度多孔支架设计与力学性能分析[J]. 机械工程学报, 2021, 57(3):220-226.[9] YAN C Z, HAO L, HUSSEIN A, et al. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51:61-73.[10] VAN BAEL S, KERCKHOFS G, MOESEN M, et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4 V porous structures[J]. Materials Science and Engineering:A, 2011, 528(24):7423-7431.[11] LIU F, MAO Z F, ZHANG P, et al. Functionally graded porous scaffolds in multiple patterns:New design method, physical and mechanical properties[J]. Materials & Design, 2018, 160:849-860.[12] 陈轲, 云忠, 周俊. TC4钛合金仿生骨植入体单元结构力学性能分析[J]. 机械科学与技术, 2020, 39(8):1277-1282.[13] AL-SAEDI D S J, MASOOD S H, FAIZAN-UR-RAB M, et al. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM[J]. Materials & Design, 2018, 144:32-44.[14] 吴先哲, 刘红旗, 王富友, 等. 激光选区熔化成形多孔钽金属构件力学性能研究[J]. 激光杂志, 2019, 40(11):154-160.[15] MA Z B, ZHANG D Z, LIU F, et al. Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting:Microstructures, mechanical properties and energy absorption[J]. Materials & Design, 2020, 187:108406.[16] MASKERY I, ABOULKHAIR N T, AREMU A O, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting[J]. Materials Science and Engineering:A, 2016, 670:264-274.

相似文献/References:

[1]潘文瀚,许明三,韦铁平,等.选区激光熔化AlSi10Mg拱形点阵成形工艺优化[J].福建工程学院学报,2024,22(03):291.[doi:10.3969/j.issn.2097-3853.2024.03.013]
 PAN Wenhan,XU Mingsan,WEI Tieping,et al.Optimization of selective laser melting AlSi10Mg arch lattice forming process[J].Journal of FuJian University of Technology,2024,22(04):291.[doi:10.3969/j.issn.2097-3853.2024.03.013]

更新日期/Last Update: 2021-08-25