[1]姚艺贤、刘德标、陈津、邓历振、洪晋伟、刘智才.山区高速公路路域生态脆弱性评价模型的构建[J].福建工程学院学报,2021,19(01):95-102.[doi:10.3969/j.issn.1672-4348.2021.01.017]
 YAO Yixian,LIU Debiao,CHEN Jin,et al.Construction of ecological vulnerability assessment model for highway areas in mountains[J].Journal of FuJian University of Technology,2021,19(01):95-102.[doi:10.3969/j.issn.1672-4348.2021.01.017]
点击复制

山区高速公路路域生态脆弱性评价模型的构建()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第19卷
期数:
2021年01期
页码:
95-102
栏目:
出版日期:
2021-02-25

文章信息/Info

Title:
Construction of ecological vulnerability assessment model for highway areas in mountains
作者:
姚艺贤、刘德标、陈津、邓历振、洪晋伟、刘智才
中铁二十四局集团福建铁路建设有限公司
Author(s):
YAO Yixian LIU Debiao CHEN Jin DENG Lizhen HONG Jinwei LIU Zhicai
Fujian Railway Construction Co., LTD., China Railway 24th Bureau Group, Sanming
关键词:
高速公路路域生态脆弱性评价遥感指数多元线性回归模型
Keywords:
highway area ecological vulnerability assessment remote sensing indices multiple linear regression model
分类号:
P237,X87
DOI:
10.3969/j.issn.1672-4348.2021.01.017
文献标志码:
A
摘要:
以Landsat8OLI/TIRS遥感影像和DEM高程数据为数据源,以福建三明境内的莆炎高速公路YA12标段两侧1000m路域范围为研究区域,对南方红壤丘陵山区高速公路路域生态脆弱性进行评价分析。应实际需要,基于遥感影像采集不同等级的样本点,确定植被、土壤、湿度、温度指数、高程、坡度作为路域生态脆弱性的评价指标,采用多元线性回归分析法构建路域生态脆弱性评价模型(总精度为83.33%,Kappa系数为0.79)。结果表明,研究路域的微度、轻度脆弱区占总面积的84.90%,说明该路域生态脆弱性程度较低,公路建设对当地生态环境影响较小;而中度、重度、极度脆弱区占总面积的15%,需加强对这些区域的环境保护,及时进行建设后生态再恢复工作。
Abstract:
The ecological vulnerability assessment of the roadside of the red soil hilly areas in southern China was evaluated and analyzed by taking the 1 000 m road area on both sides of the YA12 section of Puyan Expressway in Sanming, Fujian Province as the study area, and using Landsat 8 OLI/TIRS remote sensing images and DEM elevation data as data sources. Different ecological quality levels of sample points were collected correspondingly both in the study area and remote sensing images. The vegetation index, soil index, moisture index, elevation and slope were used as the evaluation indicators. The multiple linear regression analysis method was employed to build the ecological vulnerability assessment model, with the overall accuracy being 83.33 % and the Kappa coefficient being 0.79. Results show that the area with micro and slight vulnerability accounted for 84.90 % of the total area, indicating that the ecological vulnerability was low and the impact of highway construction was small, while moderate, severe and extremely vulnerable areas accounted for 15 % of the total area. It is necessary to strengthen the environmental protection of these areas and carry out ecological restoration after construction.

参考文献/References:

[1] SHAHABI H,HASHIM M. Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment[J]. Scientific Reports, 2015, 5(1):171-191.[2] SAHANA M,GANAIE T A. GIS-based landscape vulnerability assessment to forest fire susceptibility of Rudraprayag district,Uttarakhand,India[J]. Environmental Earth Sciences,2017,76(20):1-18.[3] NGUYEN K A,LIOU Y A. Mapping global eco-environment vulnerability due to human and nature disturbances[J]. MethodsX,2019,6:862-875.[4] 林金煌,胡国建,祁新华,等. 闽三角城市群生态环境脆弱性及其驱动力[J]. 生态学报,2018,38(12):4155-4166. [5] 何彦龙,袁一鸣,王腾,等. 基于GIS的长江口海域生态系统脆弱性综合评价[J]. 生态学报,2019,39(11):3918-3925.[6] 舒英格,彭文君,周鹏鹏. 基于灰色三角白化权集对分析模型的喀斯特山区农业生态环境脆弱性评价[J]. 应用生态学报,2020,31(8):2680-2686.[7] 中华人民共和国环境保护部. 生态环境状况评价技术规范:HJ 192—2015[S]. 北京:中国环境科学出版社,2015. [8] 杨晶,王丽园,罗丰. 基于遥感技术的公路路域生态环境监测与评价[J]. 公路,2019,64(12):260-265. [9] 胡海滨. 灰色关联法在乡村生态环境评价中的应用[J]. 福建工程学院学报,2017,15(1):88-92. [10] 郭泽呈,魏伟,庞素菲,等. 基于SPCA和遥感指数的干旱内陆河流域生态脆弱性时空演变及动因分析:以石羊河流域为例[J]. 生态学报,2019,39(7):2558-2572. [11] 李博伦,遆超普,颜晓元. Landsat 8陆地成像仪影像的缨帽变换推导[J]. 测绘科学,2016,41(4):102-107. [12] 尹柯柯,魏冠军,胡玉玺,等. 兰州市城市热岛效应与地表指数定量分析[J]. 测绘科学,2017,42(4):55-60. [13] XU H. A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing,2008,29(14):4269-4276. [14] 陈兴鹃,温新龙,郭磊. 基于Landsat 8卫星影像的南昌城市热岛效应研究[J]. 江西农业学报,2017,29(3):103-108,114. [15] 王刚,张秋平,肖荣波,等. 秋冬季节广州城市绿地对热岛效应的调控作用差异分析[J]. 中山大学学报(自然科学版),2018,57(5):38-48. [16] 王大钊,王思梦,黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感,2019,31(3):157-165. [17] 邢丽玮,牛振国,张海英. 不同湿度指数在湿地分类中的对比研究[J]. 地理与地理信息科学,2015,31(6):35-40,46. [18] 徐涵秋. Landsat 8热红外数据定标参数的变化及其对地表温度反演的影响[J]. 遥感学报,2016,20(2):229-235 [19] USGS. Using the USGS Landsat 8 Product [EB/OL]. [2015-10-12]. http:∥landsat.usgs.gov/Landsat8_Using_Product.php. [20] 侯敬怡,张延成,范文义. 结合干涉特征的极化SAR图像监督分类:将乐林场的林分类型识别[J]. 东北林业大学学报,2020,48(11):33-38.

更新日期/Last Update: 2021-02-25