[1]王欣、王虎、唐中帜、周扬杰、唐电.RuO2-CeO2复合氧化物相分离现象与本质的分析[J].福建工程学院学报,2020,18(06):535-542.[doi:10.3969/j.issn.1672-4348.2020.06.005]
 WANG Xin,WANG Hu,TANG Zhongzhi,et al.Analysis on phase-decomposition in RuO2-CeO2 complex oxides and its nature[J].Journal of FuJian University of Technology,2020,18(06):535-542.[doi:10.3969/j.issn.1672-4348.2020.06.005]
点击复制

RuO2-CeO2复合氧化物相分离现象与本质的分析()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第18卷
期数:
2020年06期
页码:
535-542
栏目:
出版日期:
2020-12-25

文章信息/Info

Title:
Analysis on phase-decomposition in RuO2-CeO2 complex oxides and its nature
作者:
王欣、王虎、唐中帜、周扬杰、唐电
福州大学
Author(s):
WANG Xin123 WANG Hu13 TANG Zhongzhi2 ZHOU Yangjie2 TANG Dian
College of Material Science and Engineering, Fuzhou University
关键词:
第一性原理Ru(1-x)CexO2相互作用系数spinodal分解曲线
Keywords:
first principle Ru(1-x)CexO2 interaction coefficient spinodal decomposition curve
分类号:
TQ460.64
DOI:
10.3969/j.issn.1672-4348.2020.06.005
文献标志码:
A
摘要:
采用基于密度泛函(DFT)的第一性原理的计算方法,获得金红石和萤石相Ru(1-x)Cex O2 固溶体的能量和结构数据,分析了固溶体的分离能、混合吉布斯自由能和热力学状态图,指出在常规热分解温度(723 K)下,固溶体存在spinodal 分解为RuO2 +CeO2 的倾向,并对723 K 热分解制备高、中、低Ru 含量的Ru(1-x) Cex O2样品进行了XRD 分析,发现Ru(1 -x) Cex O2 更倾向于遵循qusia-spinodal 机制分解为RuO2R +CeO2F。本文从体系自由能的角度初步讨论了Ru(1 -x) Cex O2发生qusia-spinodal 的反应机制。
Abstract:
Total energies and lattice structures of rutile and fluorite solid solution Ru(1-x)CexO2 were calculated by DFT first principles scalculation method. The separating energies, mixing free energies and thermodynamic phase-diagrams of Ru(1-x)CexO2 were investigated. It was indicated that the Ru(1-x)CexO2 separates spinodally into RuO2 and CeO2 at 723 K. The XRD examination was verified that Ru(1-x)CexO2 inclines to decompose qusia-spinodally into RuO2R+CeO2F, using high, medium and low-concentration ruthenium (1-x)RuO2-xCeO2 samples, which were prepared at 723 K by thermal decomposition method. The mechanism of qusia-spinodal reaction of Ru(1-x)CexO2 was discussed preliminarily based on the system free-energy.

参考文献/References:

[1] IMAMURA S, FUKUDA I, ISHIDA S. Wet oxidation catalyzed by ruthenium supported on cerium(IV) oxides[J]. Industrial & Engineering Chemistry Research, 1988, 27(4):718-721.[2] ZHANG T, TANG D, SHAO Y, et al. Synthesis and characterization of nanoscale Ce(x)Ru(1-x)O2 coatings with electrochemical activity[J]. Journal of the American Ceramic Society, 2007, 90(3):989-992.[3] SHIBLI S, AMEEN SHA M. Development and characterization of electro active CeO2-RuO2 mixed oxide and its role in alkaline hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2018, 749:250-261.[4] LI Y, WANG X, SHAO Y, et al. Stability and spinodal decomposition of the solid-solution phase in the ruthenium-cerium-oxide electro-catalyst[J]. Physical Chemistry Chemical Physics, 2015, 17(2):1156-1164.[5] SHIBLI S, RIYAS A, AMEEN SHA M, et al. Tuning of phosphorus content and electrocatalytic character of CeO2-RuO2 composite incorporated Ni-P coating for hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2017, 696:595-603.[6] WANG X, DENG F, TANG Z, et al. The nature of phase separation in a Ru-Sn-O ternary oxide electrocatalyst[J]. Physical Chemistry Chemical Physics, 2013, 15(11):3977-3984.[7] ZHU J, WANG X, YI Z, et al. Stability of solid-solution phase and the nature of phase separation in Ru-Zr-O ternary oxide[J]. The Journal of Physical Chemistry C, 2012, 116(49):25832-25839.[8] MEHTOUGUI N, RACHED D, KHENATA R, et al. Structural, electronic and mechanical properties of RuO2 from first-principles calculations[J]. Materials Science in Semiconductor Processing, 2012, 15(4):331-339.[9] BENYAHIA K, NABI Z, TADJER A, et al. Ab initio study of the structural and electronic properties of the complex structures of RuO2[J]. Physica B:Condensed Matter, 2003, 339(1):1-10.[10] TSE J, KLUG D, UEHARA K, et al. Elastic properties of potential superhard phases of RuO2[J]. Physical Review B, 2000, 61(15):10029.[11] SEKKAL W, ZAOUI A. Molecular dynamics simulation of superhard phases in RuO2[J]. Journal of Physics:Condensed Matter, 2001, 13(16):3699-3708.[12] FABRIS S, DE GIRONCOLI S, BARONI S, et al. Taming multiple valency with density functionals:a case study of defective ceria[J]. Physical Review B, 2005, 71(4):041102.[13] SKORODUMOVA N, AHUJA R, SIMAK S, et al. Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles[J]. Physical Review B, 2001, 64(11):115108.[14] WANG X, YIN Q, TANG Z, et al. The nature of phase separation in Ir-Sn-O ternary oxide electrocatalyst[J]. Journal of the European Ceramic Society, 2013, 33(15-16):3045-3052.[15] ZHANG R, VEPREK S. Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1-xSixNysolid solutions studied by ab initio calculation and thermodynamic modeling[J]. Thin Solid Films, 2008, 516(8):2264-2275.[16] PINARDI K, JAINU, JAIN S, etal. Critical thickness and strain relaxation in lattice mismatched II-VI semiconductor layers[J]. Journal of Applied Physics, 1998, 83(9):4724-4733.[17] 孙俊梅, 王欣, 魏宗平, 等. 烧结温度对Ti/RuO2-CeO2超电容性能的影响[J]. 中国稀土学报, 2011, 29(6):718-723.[18] 徐祖耀. Spinodal分解浅介[J]. 上海金属, 2010, 32(5):1-7.[19] XU T, BIN Y, DJOURELOV N, etal. Positron annihilation study of density fluctuations in amorphous poly(ethylene terephthalate) films in terms of quasispinodal decomposition[J]. Physical Review B, 2005, 71(7):075204.[20] LIU R, YAN F, YAN M. Surface grain nanocrystallization of Fe-Cr-Ni alloy steel by plasma thermochemical treatment[J]. Surface and Coatings Technology, 2019, 370:136-143.[21] HAINES J, LEGER J, SCHULTE O. Pa graphicmodified fluorite-type structures in metal dioxides at high pressure[J]. Science, 1996, 271(5249):629-631.

更新日期/Last Update: 2020-12-25