参考文献/References:
[1] HART G. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12): 1870-1891.[2] 阿蓉. 场景自适应的非侵入式负荷识别算法研究[D]. 武汉: 华中科技大学, 2018. [3] 曹敏, 魏龄, 邹京希, 等. 基于暂态过程的非侵入式负荷监测研究[J]. 水电能源科学, 2018, 36(8): 177-180.[4] 韩笑, 邓春宇, 张玉天, 等. 基于高频数据V-I特性的延时反馈负荷在线快速辨识算法[J]. 电力系统自动化, 2019, 43(9): 108-116.[5] 孙毅, 张璐, 赵洪磊, 等. 基于动态自适应粒子群算法的非侵入式家居负荷分解方法[J]. 电网技术, 2018, 42(6): 1819-1826.[6] LIU B, LUAN W, YU Y. Dynamic time warping based non-intrusive load transient identification[J]. Applied Energy, 2017, 195: 634-645.[7] MAKONIN S, POPOWICH F, BAJI〖KG-*4〗C〖DD(-*3〗′〖DD)〗 I, et al. Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring[J]. IEEE Transactions on Smart Grid, 2016, 7(6): 2575-2585.[8] 徐青山, 娄藕蝶, 郑爱霞, 等. 基于近邻传播聚类和遗传优化的非侵入式负荷分解方法[J]. 电工技术学报, 2018, 33(16): 3868-3878.[9] 彭显刚, 郑凯, 林哲昊, 等. 基于谱图理论的居民用户非侵入式负荷分解[J]. 电网技术, 2018, 42(8): 2674-2680.[10] ZHANG C, ZHONG M, WANG Z, et al. Sequence-to-point learning with neural networks for non-intrusive load monitoring. [C]∥2018 Thirty-Second AAAI Conference on Artificial Intelligence, 2018.[11] 刘耀先, 孙毅, 李彬, 等. 基于边缘嵌入深度学习的非侵入式负荷分解方法[J]. 电网技术, 2019, 43(12): 4329-4337.[12] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.[13] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.[14] SCHUSTER M, PALIWAL K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681.[15] MAKONIN S, POPOWICH F, BARTRAM L, et al. AMPds: a public dataset for load disaggregation and eco-feedback research[C]∥2013 IEEE Electrical Power & Energy Conference. Halifax, NS, Canada: IEEE, 2013: 1-6. [16] 任文龙, 许刚. 基于深度序列翻译模型的非侵入式负荷分解方法[J]. 电网技术, 2020, 44(1): 27-37.[17] BATRA N, KELLY J, PARSON O, et al. NILMTK: an open source toolkit for non-intrusive load monitoring[EB/OL]. 2014: arXiv:1404.3878[stat.AP]. https:∥arxiv.org/abs/1404.3878.[18] KELLY J, KNOTTENBELT W. Neural NILM: deep neural networks applied to energy disaggregation[C]∥Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments-BuildSys 15. New York: ACM Press, 2015: 55-64.