参考文献/References:
[1] 石金进. 基于视觉的智能车辆道路识别与障碍物检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.[2] LUO J, YAN B, WOOD K. InnoGPS for data-driven exploration of design opportunities and directions: the case of google driverless car project[J]. Journal of Mechanical Design, 2017, 139(11): 111416-111429.[3] 郭晶赛. 基于视频流检测的无人驾驶车辆行驶范围生成研究[D]. 北京: 北京交通大学, 2018.[4] PAWAR S, MUKANE S. A driver assistance system using ARM processor for lane and obstacle detection[M]∥Techno-Societal 2016. Cham: Springer International Publishing, 2017: 303-313.[5] GODHA S. On-road obstacle detection system for driver assistance[J]. Asia Pacific Journal of Engineering Science and Technology, 2017, 3(1): 16-21. [6] GOEL N, SHARMA R, NIKHIL N, et al. A crowd-sourced adaptive safe navigation for smart cities[C]∥2017 IEEE International Symposium on Multimedia (ISM). New York: IEEE, 2017: 382-387. [7] FLEMING B. Smarter and safer vehicles [automotive electronics] [J]. IEEE Vehicular Technology Magazine, 2012, 7(2): 4-9.[8] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014: 580-587.[9] GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.[10] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 779-788.[12] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.[13] 魏湧明, 全吉成, 侯宇青阳. 基于YOLO v2的无人机航拍图像定位研究[J]. 激光与光电子学进展, 2017(11): 101-110.[14] CHEN B H, MIAO X R. Distribution line pole detection and counting based on YOLO using UAV inspection line video[J]. Journal of Electrical Engineering & Technology, 2020, 15(1): 441-448.
相似文献/References:
[1]喻露,戴甜杰,余丽华.基于改进YOLOv5的道路病害智能检测[J].福建工程学院学报,2023,21(04):332.[doi:10.3969/j.issn.1672-4348.2023.04.005]
YU Lu,DAI Tianjie,YU Lihua.Automatic detection of pavement defect based on improved YOLOv5 algorithm[J].Journal of FuJian University of Technology,2023,21(01):332.[doi:10.3969/j.issn.1672-4348.2023.04.005]
[2]吴裕发,郑少峰.基于YOLOv8改进的下水管道障碍物识别算法[J].福建工程学院学报,2024,22(06):590.[doi:10.3969/j.issn.2097-3853.2024.06.012]
WU Yufa,ZHENG Shaofeng.Identification algorithm of sewer obstruction based on YOLOv8[J].Journal of FuJian University of Technology,2024,22(01):590.[doi:10.3969/j.issn.2097-3853.2024.06.012]