[1]凌静秀、杨晓静、吴志鸿、詹友基.多胞鞋底结构性能分析及胞元参数影响[J].福建工程学院学报,2019,17(06):560-564.[doi:10.3969/j.issn.1672-4348.2019.06.009]
 LING Jingxiu,YANG Xiaojing,WU Zhihong,et al.Structural performance analysis and cellular parameters’ influence of multi-cell shoe soles[J].Journal of FuJian University of Technology,2019,17(06):560-564.[doi:10.3969/j.issn.1672-4348.2019.06.009]
点击复制

多胞鞋底结构性能分析及胞元参数影响()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第17卷
期数:
2019年06期
页码:
560-564
栏目:
出版日期:
2019-12-25

文章信息/Info

Title:
Structural performance analysis and cellular parameters’ influence of multi-cell shoe soles
作者:
凌静秀、杨晓静、吴志鸿、詹友基
福建工程学院机械与汽车工程学院
Author(s):
LING Jingxiu YANG Xiaojing WU Zhihong ZHAN Youji
School of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
运动鞋底多胞结构静力学缓冲性能参数影响
Keywords:
sneaker soles multi-cell structure statics cushioning performance parameter influence
分类号:
TH113.1
DOI:
10.3969/j.issn.1672-4348.2019.06.009
文献标志码:
A
摘要:
结合现有传统鞋底方案及多胞结构特征,设计了菱形和正六边形两种多胞结构的鞋底方案,并用有限元法对不同鞋底的静力学性能进行分析,得出最优的鞋底结构方案。结果表明,同一工况下正六边形多胞鞋底结构平均变形量最大,减振缓冲性能最优越。同时,对正六边形多胞尺寸参数进行影响分析,得出当正六边形边长5mm,凹槽深度为2.5mm时,鞋底结构具有最佳的缓冲性能。
Abstract:
Combined with the traditional shoe soles with multi-cell structure features, two sole schemes with multi-cell structures were designed, which were with rhombus and regular hexagon patterns respectively. The static properties of different soles were analyzed with the finite element method, and the optimal sole structure scheme was obtained. Results show that under the same working conditions, the average deformation of regular hexagonal multi-cell sole structure is the largest, that is, the performance of its vibration absorption and cushioning is the most superior. Besides, the influence of hexagonal multi-cell size parameters is analyzed and it is concluded that the sole structure has the best cushioning performance when the side length of regular hexagon is 5mm and the groove depth is 2.5mm.

参考文献/References:

[1] 汤运启, 王幽幽, 秦蕾,等. 测试方法对评价运动鞋底减震性能的对比研究 [J]. 中国皮革, 2016(1): 34-36.[2] 刘丽. 鞋底减震结构对足部减震系统影响的研究 [D]. 西安:陕西科技大学, 2015.[3] 徐文泉, 胡伟平,王向东. 基于ANSYS/LS-DYNA非线性模块在运动鞋减震和止滑性能方面的有限元数值模拟分析 [J]. 北京体育大学学报, 2012(11): 71-75.[4] 李响, 周幼辉, 童冠,等. 超轻多孔类蜂窝夹心结构创新构型及其力学性能[J]. 西安交通大学学报, 2014, 48(9): 88-94.[5] 赵显伟. 可变形蜂窝结构的力学性能分析 [D]. 哈尔滨:哈尔滨工业大学, 2013.[6] 何彬, 李响. 一种新型组合蜂窝结构的轴向承载性能研究[J]. 机械强度, 2016(2): 328-332.[7] 方廷. 鞋底压力在运动鞋设计中的分析研究[D]. 武汉: 湖北工业大学, 2009.[8] 王海涛. 基于鸵鸟足垫优异缓冲特性的运动鞋缓震中底仿生研究[D].长春: 吉林大学, 2017.[9] GALEHDARI S, KADKHODAYAN M, HADIDI-MOUD S. Low velocity impact and quasi-static in-plane loading on a graded honeycomb structure; experimental, analytical and numerical study [J]. Aerospace Science & Technology, 2015, 47: 425-433.[10] HOLLOMAN R, DESHPANDE V, WADLEY H. Impulse transfer during sand impact with a cellular structure [J]. International Journal of Impact Engineering, 2015, 82: 36-58.[11] WANG D, BAI Z. Mechanical property of paper honeycomb structure under dynamic compression [J]. Materials & Design, 2015, 77: 59-64.[12] NISHIWAKI T. Running shoe sole stiffness evaluation method based on eigen vibration analysis [J]. Sports Technology, 2008, 1(1): 76-82.[13] LIEBERMAN D, VENKADESAN M, WERBEL W, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners [J]. Nature, 2010, 463(7280): 531-535.

更新日期/Last Update: 2019-12-25