参考文献/References:
[1] 余贻鑫, 刘博, 栾文鹏. 非侵入式居民电力负荷监测与分解技术[J]. 南方电网技术, 2013, 7(4): 1-5.[2] HART G W. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12): 1870-1891. [3] FIGUEIREDO M, DE ALMEIDA A, RIBEIRO B. Home electrical signal disaggregation for non-intrusive load monitoring (NILM) systems[J]. Neurocomputing, 2012, 96(3): 66-73. [4] 孙毅, 崔灿, 陆俊, 等. 基于遗传优化的非侵入式家居负荷分解方法[J]. 电网技术, 2016, 40(12): 3912-3917.[5] GUEDES J D S, FERREIRA D D, BARBOSA B H G. A non-intrusive approach to classify electrical appliances based on higher-order statistics and genetic algorithm: a smart grid perspective[J]. Electric Power Systems Research, 2016, 140: 65-69.[6] 王晓换, 李如意, 周东国, 等. 基于决策融合的非侵入式电力负荷辨识方法及应用[J]. 电力系统保护与控制, 2016, 44(7): 115-121.[7] BASU K, DEBUSSCHERE V, BACHA S, et al. A generic data driven approach for low sampling load disaggregation[J]. Sustainable Energy, Grids and Networks, 2017, 9: 118-127.[8] DE BAETS L, RUYSSINCK J, DEVELDER C, et al. Appliance classification using VI trajectories and convolutional neural networks[J]. Energy and Buildings, 2018, 158: 32-36. [9] 王守相, 刘天宇. 计及用电模式的居民负荷梯度提升树分类识别方法[J]. 电力系统及其自动化学报, 2017, 29(9): 27-33.[10] 宋旭帆, 周明, 涂京, 等. 基于k-NN结合核Fisher判别的非侵入式负荷监测方法[J]. 电力系统自动化, 2018, 42(6): 73-80.[11] 周明, 宋旭帆, 涂京, 等. 基于非侵入式负荷监测的居民用电行为分析[J]. 电网技术, 2018, 42(10): 3268-3276.[12] HASTIE T, ROSSET S, ZHU J, et al. Multi-class AdaBoost[J]. Statistics and Its Interface, 2009, 2(3): 349-360.[13] 翟夕阳, 王晓丹, 雷蕾, 等. 基于多类指数损失函数逐步添加模型的改进多分类AdaBoost算法[J]. 计算机应用, 2017, 37(6): 1692-1696.[14] 黄新波, 李文君子, 宋桐, 等. 采用遗传算法优化装袋分类回归树组合算法的变压器故障诊断[J]. 高电压技术, 2016, 42(5): 1617-1623.