[1]黄国凯.拱梁组合体系拱桥关键节点有限元分析[J].福建工程学院学报,2019,17(03):242-246.[doi:10.3969/j.issn.1672-4348.2019.03.007]
 HUANG Guokai.Finite element analysis of key-joints of arch-girder combination bridge[J].Journal of FuJian University of Technology,2019,17(03):242-246.[doi:10.3969/j.issn.1672-4348.2019.03.007]
点击复制

拱梁组合体系拱桥关键节点有限元分析()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第17卷
期数:
2019年03期
页码:
242-246
栏目:
出版日期:
2019-06-25

文章信息/Info

Title:
Finite element analysis of key-joints of arch-girder combination bridge
作者:
黄国凯
福建船政交通职业学院
Author(s):
HUANG Guokai
Department of Automotive Engineering, Fujian Chuanzheng Communications College
关键词:
拱桥拱梁组合体系有限元位移应力
Keywords:
arch bridge arch-girder combination finite element analysis displacement stress
分类号:
U443.3
DOI:
10.3969/j.issn.1672-4348.2019.03.007
文献标志码:
A
摘要:
以某主跨85m钢管混凝土拱桥为研究对象,采用ANSYS建立局部精细化模型,对拱座进行受力分析。研究表明:拱梁组合体系拱桥拱座的结构刚度比较大,在拱脚最大弯矩工况下,最大变形出现在哑铃型拱肋加载截面下缘,变形值仅为4.3mm;拱座整体应力分析表明,结构受力以纵桥向受压为主,整体应力值不大,拱肋与拱座节点交界面因刚度突变出现了较大的应力变化,存在不大于1MPa的主拉应力;除了端横梁预应力锚固处压应力在10MPa左右,其他部位应力绝对值均在1MPa以下,满足要求;为了进一步优化结构受力,避免局部应力集中,应在结构中增加加腋、倒角等。
Abstract:
A concrete filled steel tube arch bridge with the main span of 85 m was taken as the research object. The refined local model was established by using ANSYS to analyze the force on the arch abutment. Results show that the stiffness of the abutment of arch-girder combination bridge is relatively large. Under the condition of the maximum bending moment of arch foot, the maximum deformation occurs at the lower edge of dumbbell arch rib loading section, and the deformation value is only 4.3 mm. The overall stress analysis of arch abutment shows that the structural stress is mainly compressive in the longitudinal direction of the bridge, and the stress value is small. The interface between arch rib and arch abutment has a large stress change due to the abrupt stiffness change, and the principal tensile stress is no more than 1 MPa. Except that the compressive stress at the pre-stressed anchorage of the end beam is about 10 MPa, the absolute value of stress at other parts is less than 1 MPa, which meets the requirements. In order to optimize the stress of abutment and avoid local stress concentration, measures such as haunching and chamfering should be added to the structure.

参考文献/References:

[1]陈宝春. 钢管混凝土拱桥[M]. 3版. 北京: 人民交通出版社, 2016.[2] 陈朝慰. 拱梁组合体系桥梁施工过程受力分析[J].福建交通科技, 2011(4): 46-49.[3] 徐晓东, 汪俊. 拱梁组合体系桥梁的结构设计特点[J]. 交通标准化, 2009(21): 27-30.[4] 詹刚毅. 下承式钢管混凝土拱梁组合拱桥拱脚有限元应力分析[J]. 南昌大学学报(工科版), 2013, 35(4): 348-352.[5] 张洪金. 下承式钢管混凝土组合拱桥拱脚节点设计[J]. 公路, 2017, 62(12): 140-142.[6] 闫广鹏. 大跨径钢管混凝土拱桥拱脚应力分析[J].交通科技, 2017(3): 37-39, 43.[7] 魏俊锋. 下承式钢管混凝土刚架系杆拱桥拱脚应力分析[J]. 公路交通科技(应用技术版), 2016, 12(6): 255-256.[8] 周萌, 宁晓旭, 聂建国. 系杆拱桥拱脚连接结构受力性能分析的多尺度有限元建模方法[J]. 工程力学, 2015, 32(11): 150-159.[9] REN W X, ZHAO T, HARIK I E. Experimental and analytical modal analysis of steel arch bridge [J]. Journal of Structural Engineering, 2004, 130(7): 1022-1031.[10]NIE J, ZHOU M, WANG Y, et al. Research on cable anchorage system modeling methods for selfanchored suspension bridges with steel box girders[J]. ASCE Journal of Bridge Engineering, 2014, 19(2): 172-185.[11] BAI Y, WANG H, XIA M, et al. Statistical mesomechanics of solid, linking coupled multiple space and time scales [J]. Applied Mechanics Review, 2005, 157(11/12): 2165-2182.

更新日期/Last Update: 2019-06-25