[1]蔡益平、陈军浩、李栋伟、丁国胜、姚志雄.越江联络通道原位冻结试验温度场规律分析[J].福建工程学院学报,2019,17(03):224-229.[doi:10.3969/j.issn.1672-4348.2019.03.004]
 CAI Yiping,CHEN Junhao,LI Dongwei,et al.Analysis of the temperature field of in situ freezing test of the cross-river contact channel[J].Journal of FuJian University of Technology,2019,17(03):224-229.[doi:10.3969/j.issn.1672-4348.2019.03.004]
点击复制

越江联络通道原位冻结试验温度场规律分析()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第17卷
期数:
2019年03期
页码:
224-229
栏目:
出版日期:
2019-06-25

文章信息/Info

Title:
Analysis of the temperature field of in situ freezing test of the cross-river contact channel
作者:
蔡益平、陈军浩、李栋伟、丁国胜、姚志雄
地下工程福建省高校重点实验室
Author(s):
CAI YipingCHEN JunhaoLI DongweiDING GuoshengYAO Zhixiong
Key Laboratory of Underground Engineering of Colleges and Universities of Fujian Province
关键词:
原位冻结试验实测分析温度场数值分析
Keywords:
in-situ freeze test measured data analysis temperature field numerical analysis
分类号:
TU44
DOI:
10.3969/j.issn.1672-4348.2019.03.004
文献标志码:
A
摘要:
针对越江联络通道温度场发展规律的不确定性,提出在联络通道开挖反方向位置,利用现场冻结盐水系统,开展原位冻结试验,以探究越江联络通道冻结温度场的发展规律。分别进行单孔、双孔、三孔原位冻结试验,并对试验结果对比分析。结果表明,在相同条件下三孔冻结模式冻结壁平均温度最低降到-11.74℃,冻结壁的极限厚度达到2.8m。通过分析得到各冻结模式下冻结壁的极限厚度和冻结平均温度,确定在地下水渗流影响下三孔冻结能满足施工要求。结合冻结温度场控制微分方程,建立平面数值模型,进一步研究冻结温度场的扩展规律,与现场实测数据对比验证结果基本吻合。
Abstract:
In view of the uncertainty of the development law of the temperature field of the cross-river contact channel, it was put forward that the in situ freezing test could be carried out by using the field frozen brine system, in the opposite direction of the excavation of the contact channel, so as to explore the development law of the freezing temperature field of the cross-river connection channel. Single-hole, double-hole and three-hole in situ freezing tests were carried out, and the test results were compared and analyzed. Results show that under the same conditions, the average temperature of the frozen wall in the three-hole freezing mode was reduced to -11.74 ℃, and the limit thickness of the freezing wall reached 2.8 m. The limit thickness and average freezing temperature of the frozen wall under each freezing mode were obtained by analysis. It was concluded that the three-hole freezing can meet the construction requirements under the influence of groundwater seepage. Combined with the governing differential equation of the freezing temperature field, a two-dimensional numerical model was established, and the expansion law of the freezing temperature field was further studied, which was in good agreement with the field measured data.

参考文献/References:

[1]杨平, 陈瑾, 张尚贵, 等. 软弱地层联络通道冻结法施工温度及位移场全程实测研究[J]. 岩土工程学报, 2017, 39(12): 2226-2234.[2] 〖JP4〗ZHANG C, YANG W H, QI J G, et al. Analytic computation on the forcible thawing temperature field formed by a single heat transfer pipe with unsteady outer surface temperature[J]. Journal of Coal Science and Engineering, 2012, 18(1): 18-24.[3] HU X D, FANG T. Numerical simulation of temperature field at the active freeze period in tunnel construction using freezesealing pipe roof method[C]//GeoShanghai 2014, May 26-28, 2014, Shanghai, China. Reston, VA, USA: American Society of Civil Engineers, 2014.[4] 孙雪兵. 国内地铁首条越江区间联络通道结构设计[J]. 铁道工程学报, 2014(2): 72-77.[5] 丁航, 李方政, 崔灏. 地下水作用下井筒冻结温度场数值分析[J]. 煤炭技术, 2018, 37(3): 195-197.[6] PIMENTEL E, PAPAKONSTANTINOU S, ANAGNOSTOU G. Numerical interpretation of temperature distributions from three ground freezing applications in urban tunnelling[J]. Tunnelling and Underground Space Technology, 2012, 28: 57-69.[7] 〖JP3〗陈雪莹, 谭忠盛, 袁杰, 等. 富水圆砾地层盾构隧道联络通道加固技术研究[J]. 土木工程学报, 2017, 50(S1): 105-110.[8] VITEL M, ROUABHI A, TIJANI M, et al. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities[J]. Computers and Geotechnics, 2016, 73: 1-15.[9] VITEL M, ROUABHI A, TIJANI M, et al. Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities[J]. Computers and Geotechnics, 2015, 63: 99-111.[10]许黎明, 陈晓坚, 彭正勇, 等. 海底隧道联络通道冻结法施工健康监测技术研究[J]. 隧道建设, 2018, 38(2): 295-299.[11] 陈军浩. 多圈管冻结模型试验及人工冻土冻胀规律研究[D]. 淮南: 安徽理工大学, 2013.[12] 杨炀. 地下水渗流对联络通道冻结温度场的影响研究[D]. 徐州: 中国矿业大学, 2017.[13] 沈阳. 多排管人工冻结平均温度及厚度计算方法研究[D]. 南京: 南京林业大学, 2015.[14] 蔡海兵, 黄以春, 庞涛. 地铁联络通道三维冻结温度场有限元分析[J]. 铁道科学与工程学报, 2015, 12(6): 1436-1443.[15] 李方政, 丁航, 张绪忠. 渗流作用下富水砂层双排管冻结壁形成规律模型试验研究[J]. 岩石力学与工程学报, 2019, 38(2): 386-395.

更新日期/Last Update: 2019-06-25