[1]郑文婷,林文,肖一,等.典型矮塔斜拉桥地震风险概率评估方法研究[J].福建工程学院学报,2019,17(01):29-35.[doi:10.3969/j.issn.1672-4348.2019.01.006]
 ZHENG Wenting,LIN Wen,XIAO Yi,et al.Assessment of the seismic risk probability of a typical lower-tower cable-stayed bridge[J].Journal of FuJian University of Technology,2019,17(01):29-35.[doi:10.3969/j.issn.1672-4348.2019.01.006]
点击复制

典型矮塔斜拉桥地震风险概率评估方法研究()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第17卷
期数:
2019年01期
页码:
29-35
栏目:
出版日期:
2019-02-25

文章信息/Info

Title:
Assessment of the seismic risk probability of a typical lower-tower cable-stayed bridge
作者:
郑文婷林文肖一张九香
福建工程学院 土木工程学院
Author(s):
ZHENG Wenting LIN Wen XIAO Yi ZHANG Jiuxiang
School of Civil Engineering, Fujian University of Technology
关键词:
地震动风险概率评估矮塔斜拉桥拉丁超立方抽样增量动力分析
Keywords:
ground motion seismic risk probability assessment lower-tower cable-stayed bridge Latin Hypercube Sampling incremental dynamic analysis
分类号:
TU399
DOI:
10.3969/j.issn.1672-4348.2019.01.006
文献标志码:
A
摘要:
鉴于矮塔斜拉桥受力性能的特殊性,引入增量动力分析(IDA)和拉丁超立方体抽样(LHS)评估该结构在地震激励下发生损伤的风险概率。首先采用LHS考虑桥梁构件材料的随机性,与事先选取的地震波相结合形成桥梁-地震动样本集合;其次在确定桥梁有限元模型主要构件损伤指标的基础上采用基于蒙特卡罗(MC)抽样的IDA进行地震易损性分析和地震风险概率评估。为验证方法的正确性和有效性,对一预应力混凝土独塔双索面矮塔斜拉桥结构模型进行地震风险概率评估,结果表明:该方法既充分考虑了材料和地震输入双重随机性又避免了繁琐的积分过程,同时也提高了工程计算的效率及精度。
Abstract:
Due to the particular mechanical properties of lower-tower cable-stayed bridge, incremental dynamic analysis (IDA) and Latin Hypercube Sampling (LHS) method were combined to evaluate the risk probability of damage to bridge structures under earthquake excitation. In this method, the LHS was first introduced to consider the randomness of structural materials, and hence they are combined with pre-selected seismic waves to produce a sample set of ground motion-bridge combination. Then, on the basis of determining the damage index of the key components in the bridge’s finite element model, Monte Carlo (MC) sampling based IDA was used to perform seismic vulnerability analysis and seismic risk probability assessment. The accuracy and effectiveness of the proposed method is illustrated via the evaluation of the seismic risk probability of a prestressed concrete cable-stayed bridge model with a single low tower and double cable planes. Results show that the proposed method not only takes into account the randomness of materials and earthquake excitation, but also avoids the cumbersome integration and improves computational efficiency and accuracy.

参考文献/References:

[1] YEGIAN M K, GHAHRAMAN V G. Risk based methodology for seismic rehabilitation of earth dams[C]. Proceedings of Geotechnical Special Publication,1993, 145-158.[2] KORKMAZ K,SARI A, CARHOGLU A. Seismic risk assessment of storage tanks in Turkish industrial facilities[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4): 314-320.[3] LUPOIL A, FRANCHIN P, SCHOTANUS M. Seismic risk evaluation of RC bridge structures [J]. Journal of Earthquake Engineering and Structural Dynamics, 2003, 32(8): 1275-1290.[4] ZHONG J, GARDONI P, ROSOWSKY D, et al. Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with two-column bents[J]. ASCE Journal of Engineering Mechanics, 2008, 134(6): 495-504.[5] AGRAWAL A K, GHOSN M, ALAMPALLI S, et al. Seismic fragility of retrofitted multi-span continuous steel bridges in New York. [J]. ASCE Journal of Bridge Engineering, 2012, 17(4): 562-575.[6] 乔美丽, 杜进生, 王开健. 大跨连续刚构桥施工期间地震风险分析[J]. 公路交通科技, 2010, 27(11): 78-82.[7] 冯清海, 袁万城. 基于IDA-MC的桥梁地震风险概率评估方法[J]. 长安大学学报, 2010, 30(3): 60-65.[8] 陈力波, 张建经, 卓卫东. 汶川地区公路桥梁系统地震风险评估[J]. 土木工程学报, 2013, 46(2): 242-248.[9] 夏春旭, 柳春光. 基于HAZUS的预应力混凝土简支梁桥地震风险评价[J]. 桥梁建设, 2016, 46(6): 61-66.[10] 钟剑, 万华平, 任伟新, 等. 全概率理论斜拉桥地震风险分析[J]. 振动工程学报, 2018, 31(4): 654-661.[11] CORNELL C A. Engineering seismic risk analysis [J]. Bulletin of the Seismological Society of America, 1968, 58(5): 1583-1968.[12] 高小旺, 鲍霭斌. 地震作用的概率模型及其统计参数[J]. 地震工程与工程振动, 1985, 5(1): 13-22.[13] 王京哲, 朱晞. 近场地震速度脉冲下的反应谱加速度敏感区[J]. 中国铁道科学, 2003, 24(6): 27-30.[14] 董俊, 单德山, 张二华, 马腾. 非规则桥梁近、远场地震易损性对比分析 [J]. 哈尔滨工业大学学报, 2016, 48(3): 159-165.[15] 郑文婷. 矮塔斜拉桥结构地震风险概率评估[D]. 福州: 福州大学, 2012.[16] HOSHINO N, TAKEMURA A. On reduction of finite sample variance by extended Latin hypercube sample [J]. Bernoulli, 2000, 6(6): 1035-1050.[17] 焦驰宇. 基于性能的大跨斜拉桥地震易损性分析[D]. 上海: 同济大学, 2008.[18] HWANG H, LIU J, CHIU Y. Seismic fragility analysis of highway bridges[D]. Center for Earthquake Research and Information, The University of Memphis, Memphis(TN), USA, 2001.[19] 王宇. 变墩高公路桥梁的地震易损性分析[D]. 上海: 同济大学, 2007.

相似文献/References:

[1]杜喜朋,吴琛,项洪,等.地震动混沌特性判别及影响因素分析[J].福建工程学院学报,2018,16(03):236.[doi:10.3969/j.issn.1672-4348.2018.03.007]
 DU Xipeng,WU Chen,XIANG Hong,et al.Identification of the chaotic characteristics of ground motion and analysis of its influencing factors[J].Journal of FuJian University of Technology,2018,16(01):236.[doi:10.3969/j.issn.1672-4348.2018.03.007]

更新日期/Last Update: 2019-02-25