[1]林小英,苏婷,钟琴华,等.Ni-MOF的合成、表征及其CO2吸附性能[J].福建工程学院学报,2018,16(04):346-350.[doi:10.3969/j.issn.1672-4348.2018.04.008]
 LIN Xiaoying,SU Ting,ZHONG Qinhua,et al.Synthesis, characterization and CO2 adsorption properties of Ni-MOF[J].Journal of FuJian University of Technology,2018,16(04):346-350.[doi:10.3969/j.issn.1672-4348.2018.04.008]
点击复制

Ni-MOF的合成、表征及其CO2吸附性能()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第16卷
期数:
2018年04期
页码:
346-350
栏目:
出版日期:
2018-08-25

文章信息/Info

Title:
Synthesis, characterization and CO2 adsorption properties of Ni-MOF
作者:
林小英苏婷钟琴华林松烨刘亚敏史荣会
福建工程学院生态环境与城市建设学院
Author(s):
LIN Xiaoying SU Ting ZHONG Qinhua LIN Songye LIU Yamin SHI Ronghui
School of Ecological Environment and Urban Construction, Fujian University of Technology
关键词:
溶剂热法Ni-MOF反应时间CO2吸附性能
Keywords:
solvothermal synthesis Ni-MOF reaction time CO2 absorption properties
分类号:
TB34
DOI:
10.3969/j.issn.1672-4348.2018.04.008
文献标志码:
A
摘要:
以硝酸镍为金属离子源、对苯二甲酸为配体,N, N-二甲基甲酰胺为溶剂,采用溶剂热法合成了金属-有机骨架Ni-MOF,采用X射线粉末衍射、N2吸附/脱附、扫描电镜、红外光谱和热重分析等方法对样品进行表征,考察了反应时间对样品结构及吸附性能的影响,测试了样品的CO2的吸附性能。结果表明, 150 ℃反应4 h后得到Ni-MOF球形晶体,延长反应时间对Ni-MOF的结构及性能没有明显影响。样品的BET面积为1 200~1 221 m2/g,平均孔径为1.95 nm,在常压27 ℃时,对CO2的吸附量为17.9%,经10次吸附/脱附循环实验后,吸附量稳定在16.5%~17.9%,是一个良好的吸附材料。
Abstract:
Ni-MOF was successfully synthesized by the solvethermal method, with nickel nitrate as the metal ion source, terephthalic acid as the ligand and n-dimethyl formamide as the solvent. Such methods as powder X-ray diffraction (PXRD), N2 absorption/desorption, scanning electron microscope (SEM), infrared spectroscope (IR) and thermogravimetric analysis (TGA) were adopted to characterize synthesized Ni-MOF, investigate the effects of reaction time on its crystal structure and test its CO2 absorption property. Experimental results show that tiny crystals of Ni-MOF with spherical morphology were produced after reaction at 150℃ for four hours; prolonging the reaction time had no significant effects on the structure and properties of Ni-MOF. The sample has a BET surface area of 1 212 m2/g and an average aperture of 1.95 nm. CO2 adsorption studies show that this material could absorb 17.9% of CO2 at 27 ℃ and atmospheric pressure. The CO2 adsorption capacity stabilized at 16.5%~17.9% after ten cycles of absorption/desorption experiments, which prove that it is a very good absorbent.

参考文献/References:

[1] WEBLEY P A. Adsorption technology for CO2 separation and capture: a perspective[J]. Adsorption, 2014, 20(2/3): 225-231.
[2] LIU J, THALLAPALLY P K, MCGRAIL B P, et al. Progress in adsorption-based CO2 capture by metal-organic frameworks[J]. Chemical Society Reviews, 2012, 41(6): 2308-2322.
[3] WU X, BAO Z, YUAN B, et al. Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation[J]. Microporous and Mesoporous Materials, 2013, 180(9): 114-122.
[4]HUANG Sisi, XIA Qibin, LI Zhong, et al. Stabilities and applications of magnetorheolodical fluids [J]. Journal of Functional Materials, 2010, 41(6):961-964, 968.
[5] EDDAOUDI M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472.
[6] LIU J, WANG Y, BENIN A I, et al. CO2 /H2O adsorption equilibrium and rates on metal organic frameworks: HKUST-1 and Ni/DOBDC[J]. Langmuir, 2010, 26(17): 14301-14307.
[7] MiLLWARD A R, YAGHI O M. Metal organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999.
[8] DIETZEL PASCAl D C, PANELLA Barbara, HIRSCHER Michael, et al. Hydrogen adsorption in a Nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvatedframework[J]. Chemical Communications, 2006,1(9): 959-961.
[9] BRITT D, FURUKAWA H, WANG B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. Proceedings of the National Academy of Sciences, 2009, 106(49): 20637-20640.
[10] ZHANG F, JIANG D, ZHANG X. Porous NiO materials prepared by solid-state thermolysis of a Ni-MOF crystal for lithium-ion battery anode[J]. Nano-Structures & Nano-Objects, 2016, 5: 1-6.
[11] WANG N, MUNDSTOCK A, LIU Y, et al. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation[J]. Chemical Engineering Science, 2015, 124: 27-36.
[12] CAGLAYAN B S, AKSOYLU A E. CO2 adsorption on chemically modified activated carbon[J]. Journal of Hazardous Materials, 2013, 252-253(10): 19-28.
[13] ZHANG Yi, YANG Xiangui, WANG Qingyin, et al. Synthesis of Nitro-modified MOF-5 and its application on catalyzing the thermal decomposition of carbamates[J]. Chemical Journal of Chinese Universities, 2014, 35(3): 613-618.
[14] SHI Jingjin, LIU Yamin, CHEN Jie, et al. Dynamic performance of CO2 adsorption with amine-modified SBA-16[J]. ActaPhysico-Chimica Sinica, 2010, 26(11): 3023-3029.

更新日期/Last Update: 2018-08-25