[1]黄诗浩,李磊毅,谢文明,等.Ge/Ge0.85Si0.15量子阱发光结构设计[J].福建工程学院学报,2017,15(04):333-337.[doi:10.3969/j.issn.1672-4348.2017.04.006]
 Huang Shihao,Li Leiyi,Xie Wenming,et al.Structural design of Ge/Ge0.85Si0.15 quantum well for light emitting[J].Journal of FuJian University of Technology,2017,15(04):333-337.[doi:10.3969/j.issn.1672-4348.2017.04.006]
点击复制

Ge/Ge0.85Si0.15量子阱发光结构设计()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第15卷
期数:
2017年04期
页码:
333-337
栏目:
出版日期:
2017-08-25

文章信息/Info

Title:
Structural design of Ge/Ge0.85Si0.15 quantum well for light emitting
作者:
黄诗浩李磊毅谢文明汪涵聪陈炳煌
福建工程学院信息科学与工程学院
Author(s):
Huang Shihao Li Leiyi Xie Wenming Wang Hancong Chen Binhuang
College of Information Science and Engineering, Fujian University of Technology
关键词:
锗硅 量子阱 发光 设计
Keywords:
germanium (Ge) silicon Ge quantum well emission design
分类号:
O47
DOI:
10.3969/j.issn.1672-4348.2017.04.006
文献标志码:
A
摘要:
提出了采用Ge/Ge0.85Si0.15量子阱结构制备Ge材料直接带隙发光器件的设计方法。基于量子力学理论,设计得到不同量子阱宽度下的能级分布情况以及载流子在Γ1-HH1之间的复合随量子阱宽度的变化趋势。设计结果给出了具体的能级与波函数的分布情况,可为实验制备Ge/Ge0.85Si0.15量子阱发光器件提供理论指导。
Abstract:
The design method of utilizing Ge/Ge0.85Si0.15 quantum well structure to prepare silicon photonic materials with gaps for light emitting was presented. The distribution of quantum energy levels under different widths of quantum well and light emitting of the light carrier composite at (from) Γ1-HH1 transition at various widths of the quantum well were obtained based on quantum mechanics theory. The distribution of the specific energy levels and wave functions was illustrated, which would provide theoretical guidance for the preparation of Ge/ Ge0.85Si0.15 quantum well light-emitting devices.

参考文献/References:

[1] Kawamura Y, Huang K, Thombare S, et al. Direct-gap photoluminescence from germanium nanowires[J]. Physical Review B,2012,86:035306-1-035306-6.
[2] Huang S, Li C, Chen C, et al. Properties of n-Ge epilayer on Si substrate with in-situ doping technology[J]. Chinese Physics B,2016,25:066601-1-066601-5.
[3] Lin G, Chen N, Zhang L, et al. Roomtemperature electroluminescence from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells on a Ge virtual substrate[J]. Materials,2016,9:803-1-803-10.
[4] Kuo Y, Lee Y, Ge Y, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J].Nature,2005,437:1334-1336.
[5] Bonfanti M, Grilli E, Guzzi M, et al. Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers[J].Physical Review B,2008,78(4):041407-1-041407-4.
[6] Chaisakul P, Marris D, Isella G, et al. Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide[J].Applied Physics Letter,2011,99:141106-1-141106-3 .
[7] Liu Z, Hu W, Li C, et al. Room temperature direct-band gap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells[J].Applied Physics Letter,2012,101:231108-1-231108-4 .
[8] Chen Y, Li C, Lai H, et al.Quantumconfined direct band transitions in tensile strained Ge/SiGe quantum wells on silicon substrates[J].Nanotechnology,2010,21:115207-1-115207-5.
[9] Wu P, Huang Y, Hsu H, et al. Characterization of Ge/Si0.16Ge0.84 multiple quantum wells on Ge-on-Si virtual substrate using piezoreflectance spectroscopy[J].Solid State Communications,2013,167:5-9.

更新日期/Last Update: 2017-08-25