[1]翁晴.ZnCl2活化笋壳活性炭的制备及其对亚甲基蓝的吸附动力学研究[J].福建工程学院学报,2016,14(04):362-366.[doi:10.3969/j.issn.1672-4348.2016.04.010]
 Weng Qing.Preparation of ZnCl2 activated carbon from bamboo shoot shell and its adsorption kinetics[J].Journal of FuJian University of Technology,2016,14(04):362-366.[doi:10.3969/j.issn.1672-4348.2016.04.010]
点击复制

ZnCl2活化笋壳活性炭的制备及其对亚甲基蓝的吸附动力学研究()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第14卷
期数:
2016年04期
页码:
362-366
栏目:
出版日期:
2016-08-25

文章信息/Info

Title:
Preparation of ZnCl2 activated carbon from bamboo shoot shell and its adsorption kinetics
作者:
翁晴
福建工程学院生态环境与城市建设学院
Author(s):
Weng Qing
College of Ecological Environment and Urban Construction, Fujian University of Technology
关键词:
ZnCl2 笋壳 活性炭 正交实验 吸附动力学
Keywords:
ZnCl2 bamboo shoot shell activated carbon orthogonal experiment adsorption kinetics
分类号:
X703
DOI:
10.3969/j.issn.1672-4348.2016.04.010
文献标志码:
A
摘要:
以笋壳为原料,采用氯化锌为活化剂制备活性炭,通过正交实验研究各影响因素对活性炭性能的影响。通过静态吸附实验研究ZnCl2活化笋壳活性炭对亚甲基蓝的吸附特性,并从动力学角度探讨其吸附机理。结果表明,制备活性炭主要影响因素为活化温度,其次是ZnCl2浓度,活化时间影响最小。制备活性炭的最佳条件是:ZnCl2浓度为3 mol/L,活化温度控制在400 ℃,活化时间2 h。活性炭对亚甲基蓝的吸附符合准二级动力学方程和Elovich方程,吸附速率控制步骤主要为膜扩散控制。等温吸附曲线与Langmuir型和Freundlich型均拟合较好,吸附过程是优惠吸附。
Abstract:
Bamboo shoot shell was used as raw material, and activated carbon was prepared by ZnCl2 activation. The effect of preparation condition was studied by orthogonal experiment. The adsorption equilibrium and kinetic behaviour of methylene blue onto activated carbon was investigated by conducting a series of batch adsorption experiments, the adsorption mechanism of which was discussed from kinetic point of view. The results show that the main preparation influential factor is activation temperature, followed by ZnCl2 concentration, and the activation time. The optimum preparation conditions are: ZnCl2 concentration of 3 mol/L; activation temperature of 400 ℃; activation time of 2h. The adsorption process follows the pseudo second order kinetic equation and the Elovich equation. The adsorption rate is mainly controlled by membrane diffusion. The adsorption curve fits well with both of the Langmuir and Freundlich isotherm, the process of which is a favourable adsorption.

参考文献/References:

[1] 俞鹏,翟国庆,黄逸凡,等.城市居住区设备噪声频率特性分析[J].中国环境科学,2006,26(4):491-495.
[2] Crocker M J, Raju P K, Forssen B. Measurement of transmission loss of panels by the direct determination of transmitted acoustic intensity[J]. Noise Control Engineering,1981,17(1):6-11.
[3] Halliwell R E, Warnock A C C. Sound transmission loss: Comparison of conventional techniques with sound intensity techniques[J]. The Journal of the Acoustical Society of America,1985,77(6):2094-2103.
[4] Uosukainen S. On the use of the Waterhouse correction[J]. Journal of Sound and Vibration,1995,186(2):223-230.
[5] Jonasson H G. Sound intensity and sound reduction index[J]. Applied Acoustics,1993,40(3):281-293.
[6] Machimbarrena M, Jacobsen F. Is there a systematic disagreement between intensitybased and pressurebased sound transmission loss measurements[J]. Building Acoustics,1999, 6(2):101-111.

更新日期/Last Update: 2016-08-25