[1]张国成,林金阳.绝缘修饰层及其厚度对喷墨打印OTFT的影响[J].福建工程学院学报,2016,14(06):597-602.[doi:10.3969/j.issn.1672-4348.2016.06.017]
 Zhang Guocheng,Lin Jinyang.The impact of dielectric modification layer and its thickness on the performance of inkjet-printed OTFT[J].Journal of FuJian University of Technology,2016,14(06):597-602.[doi:10.3969/j.issn.1672-4348.2016.06.017]
点击复制

绝缘修饰层及其厚度对喷墨打印OTFT的影响()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第14卷
期数:
2016年06期
页码:
597-602
栏目:
出版日期:
2016-12-25

文章信息/Info

Title:
The impact of dielectric modification layer and its thickness on the performance of inkjet-printed OTFT
作者:
张国成 林金阳
福建工程学院 信息科学与工程学院
Author(s):
Zhang Guocheng Lin Jinyang
College of Information Science and Engineering, Fujian University of Technology
关键词:
有机薄膜晶体管 原子层沉积 喷墨打印 表面修饰 修饰层厚度
Keywords:
organic thin film transistor(OTFT) atomic layer deposit (ALD) inkjet printing surface modification modification layer thickness
分类号:
TN321.5
DOI:
10.3969/j.issn.1672-4348.2016.06.017
文献标志码:
A
摘要:
通过在底栅顶接触的喷墨打印有机薄膜晶体管的SiO2表面采用原子层沉积方式制备薄层的Al2O3修饰层,并与未修饰前进行比较,发现有源层在ALD-Al2O3修饰后的SiO2表面接触角大大变小,且喷墨打印的有源层线条变粗。而随着ALD-Al2O3修饰层厚度的增加,SiO2表面粗糙度变大。通过测试其电学性能,发现ALD- Al2O3修饰层厚度为1 nm时,OTFT的性能最好,与未修饰前相比,其迁移率提高了近8倍,而开关比提高约4个数量级。
Abstract:
The SiO2 surface of bottom-gate top-contact configuration inkjet-printed organic thin film transistor(OTFT) was modified by preparing Al2O3 modification layer with ALD depositing on the dielectric layer. The contact angle of the active layer post ALD- Al2O3 modification decreased, while the width of the profiles of the inkjet printing active layers increased. With the increase of the thickness of ALD- Al2O3, the roughness of the dielectric layers increased. When the thickness of ALD- Al2O3 was 1nm, the performance of OTFT reached the best, with the mobility increasing 8 times and the on/off current ratio increasing 4 orders of magnitude.

参考文献/References:

[1] Kang B, Lee W H, Cho K. Recent advances in organic transistor printing processes[J].ACS Applied Materials & Interfaces,2013,5(7):2302-2315.
[2] Zhang G, Yang H, He L, et al. Importance of domain purity in semi-conducting polymer/insulating polymer blends transistors[J]. Journal of Polymer Science(Part B): Polymer Physics,2016,54:1760-1766.
[3] Yang H, Zhang G, Zhu J, et al. Improving charge mobility of polymer transistors by judicious choice of the molecular weight of insulating polymer additive[J].The Journal of Physical Chemistry C,2016,120(31):17282-17289.
[4] De Gans B J, Duineveld P C, Schubert U S. Inkjet printing of polymers: state of the art and future developments[J]. Advanced Materials,2004,16(3):203-213.
[5] Sekitani T, Noguchi Y, Zschieschang U, et al. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy[J]. Proceedings of the National Academy of Sciences,2008,105(13):4976-4980.
[6] Kwon Y J, Park Y D, Lee W H. Inkjet-printed organic transistors based on organic semiconductor/insulating polymer blends[J]. Materials,2016,9(8):650.
[7] Kwak D, Choi H H, Kang B, et al.Tailoring norphology and structure of inkjet-printed liquid-crystalline semiconductor/insulating polymer blends for high-stability organic transistors[J]. Advanced Functional Materials,2016,26(18):3003-3011.
[8] Dadvand A, Lu J, Py C, et al. Inkjet printable and low annealing temperature gate-dielectric based on polymethylsilsesquioxane for flexible n-channel OFETs[J]. Organic Electronics,2016,30:213-218.
[9] Lin Y, Liu C F, Song Y J, et al. Improved performances of inkjet-printed poly (3-hexylthiophene) organic thin-film transistors by inserting an ionic self-assembled monolayer[J]. RSC Advances,2016,6(47):40970-40974.
[10] Ortiz R P, Facchetti A, Marks T J.High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors[J]. Chemical Reviews,2009,110(1):205-239.
[11] He W, Xu W, Peng Q, et al. Surface modification on solution processable ZrO2 high-k dielectrics for low voltage operations of organic thin film transistors[J]. The Journal of Physical Chemistry C,2016,120(18):9949-9957.
[12] Liu C, Xu Y, Noh Y Y. Contact engineering in organic field-effect transistors[J]. Materials Today,2015,18(2):79-96.
[13] Ali K, Ali J, Mehdi S M, et al. Rapid fabrication of Al2O3 encapsulations for organic electronic devices[J]. Applied Surface Science,2015,353:1186-1194.
[14] Ding X, Zhang J, Shi W, et al. Effect of gate insulator thickness on device performance of InGaZnO thin-film transistors[J]. Materials Science in Semiconductor Processing,2015,29:326-330.

更新日期/Last Update: 2016-12-25