[1]蔡曙光,王明杰.Fe-16Mn-3.5C-3Si-3Cu高锰TWIP合金铸铁的热处理金相组织分析[J].福建工程学院学报,2016,14(01):32-35.[doi:10.3969/j.issn.1672-4348.2016.01.008]
 Cai Shuguang,Wang Mingjie.Study on metallographic structure of Fe-16Mn-3.5C-3Si-3Cu high manganese TWIP alloy cast iron via heat treatment[J].Journal of FuJian University of Technology,2016,14(01):32-35.[doi:10.3969/j.issn.1672-4348.2016.01.008]
点击复制

Fe-16Mn-3.5C-3Si-3Cu高锰TWIP合金铸铁的热处理金相组织分析()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第14卷
期数:
2016年01期
页码:
32-35
栏目:
出版日期:
2016-02-25

文章信息/Info

Title:
Study on metallographic structure of Fe-16Mn-3.5C-3Si-3Cu high manganese TWIP alloy cast iron via heat treatment
作者:
蔡曙光王明杰
福建工程学院材料科学与工程学院
Author(s):
Cai Shuguang Wang Mingjie
College of Materials Science and Engineering, Fujian University of Technology
关键词:
合金铸铁 热处理工艺 组织形貌 TWIP效应
Keywords:
alloy cast iron heat treatment process metallographic structure TWIP effect
分类号:
TG143.5
DOI:
10.3969/j.issn.1672-4348.2016.01.008
文献标志码:
A
摘要:
通过改变加热温度和保温时间,研究不同热处理工艺对Fe-16Mn-3.5C-3Si-3Cu高锰TWIP合金铸铁组织的影响,对试样进行物相分析和金相组织观察。实验结果表明:随着加热温度和保温时间的增加,组织中退火孪晶的数量增加,孪晶发育趋于完善。热处理后其室温组织为单一奥氏体;热处理的合金铸铁拉伸变形后,产生大量形变孪晶,其变形后的基体仍然保持单一奥氏体组织,未发生马氏体相变,发生了完全的TWIP效应。
Abstract:
Different heat treatment processes for Fe-16Mn-3.5C-3Si-3Cu high manganese TWIP alloy cast iron were investigated through X-ray diffraction(XRD) and metalloscope. Experimental results show that the number of annealing twins in tissue has increased, and twin development tends to be perfect with the increase of heat treatment temperature and maintaining time. The alloy cast iron was fully austenitic after heat treatment, which produced large quantities of deformation twins after alloy cast iron underwent tensile strain. The matrix after deformation kept fully austenitic structure without the occurrence of martensitic transformation, while TWIP effect occurred completely.

参考文献/References:

[1] Scott C, Allain S, Faral M, et al. The development of a new Fe-Mn-C austenitic steel for automotive applications[J]. Revue De Métallurgie,2006,103(6):293-302.
[2] Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering A,2004,387/388/389:158-162.
[3] Vercammen S, Blanpain B, De Cooman B C, et al. Cold rolling behaviour of an austenitic Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning[J]. Acta Materialia,2004,52(7):2005-2012.
[4] Jin J E, Lee Y K. Strain hardening behavior of a Fe-18Mn-0.6C-1.5Al TWIP steel[J]. Materials Science and Engineering A,2009,527(1/2):157-161.
[5] 米振莉,唐荻,严玲,等.高强度高塑性TWIP钢的开发研究[J].钢铁,2005,40(1):58-63.
[6] GutierrezUrrutia I, Zaefferer S, Raabe D. The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel[J]. Materials Science and Engineering A,2010,527(15):3552-3560.
[7] 郝石坚.现代铸铁学[M].北京:冶金工业出版社,2004:353-364.
[8] 申泽骥,唐骥,苏贵桥.高镍奥氏体铸铁的生产工艺特征[J].铸造技术,2003,24(2):91-93.
[9] 戴塘顺.镍奥氏体铸铁的生产[J].现代铸铁,2004(2):36-38.
[10] 吴德海.球墨铸铁[M].北京:中国水利水电出版社,2006:50-68.
[11] 林淑梅,朱定一,杨泽斌,等.高强韧TWIP铸铁的形变组织与力学性能[J].铸造,2010,59(12):1267-1275.
[12] 黄芬芬,朱定一,宋卫涛,等. Mn含量对高强韧TWIP球墨铸铁组织和性能的影响[J].铸造,2011,60(9):831-835.

更新日期/Last Update: 2016-02-25