参考文献/References:
[1] Scott C, Allain S, Faral M, et al. The development of a new Fe-Mn-C austenitic steel for automotive applications[J]. Revue De Métallurgie,2006,103(6):293-302.
[2] Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering A,2004,387/388/389:158-162.
[3] Vercammen S, Blanpain B, De Cooman B C, et al. Cold rolling behaviour of an austenitic Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning[J]. Acta Materialia,2004,52(7):2005-2012.
[4] Jin J E, Lee Y K. Strain hardening behavior of a Fe-18Mn-0.6C-1.5Al TWIP steel[J]. Materials Science and Engineering A,2009,527(1/2):157-161.
[5] 米振莉,唐荻,严玲,等.高强度高塑性TWIP钢的开发研究[J].钢铁,2005,40(1):58-63.
[6] GutierrezUrrutia I, Zaefferer S, Raabe D. The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel[J]. Materials Science and Engineering A,2010,527(15):3552-3560.
[7] 郝石坚.现代铸铁学[M].北京:冶金工业出版社,2004:353-364.
[8] 申泽骥,唐骥,苏贵桥.高镍奥氏体铸铁的生产工艺特征[J].铸造技术,2003,24(2):91-93.
[9] 戴塘顺.镍奥氏体铸铁的生产[J].现代铸铁,2004(2):36-38.
[10] 吴德海.球墨铸铁[M].北京:中国水利水电出版社,2006:50-68.
[11] 林淑梅,朱定一,杨泽斌,等.高强韧TWIP铸铁的形变组织与力学性能[J].铸造,2010,59(12):1267-1275.
[12] 黄芬芬,朱定一,宋卫涛,等. Mn含量对高强韧TWIP球墨铸铁组织和性能的影响[J].铸造,2011,60(9):831-835.