[1]许晓勤,陈淑梅.新型客车磁流变缓速器制动力计算与仿真[J].福建工程学院学报,2015,13(06):551-556.[doi:10.3969/j.issn.1672-4348.2015.06.008]
 Xu Xiaoqin,Chen Shumei.Braking moment calculation and simulation of a novel coach magnetorheological retarder[J].Journal of FuJian University of Technology,2015,13(06):551-556.[doi:10.3969/j.issn.1672-4348.2015.06.008]
点击复制

新型客车磁流变缓速器制动力计算与仿真()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第13卷
期数:
2015年06期
页码:
551-556
栏目:
出版日期:
2015-12-25

文章信息/Info

Title:
Braking moment calculation and simulation of a novel coach magnetorheological retarder
作者:
许晓勤陈淑梅
福建船政交通职业学院汽车运用工程系
Author(s):
Xu Xiaoqin Chen Shumei
Automotive Application Engineering Department, Fujian Chuanzheng Communication College
关键词:
磁流变液 缓速器 制动力 仿真
Keywords:
magnetorheological fluid (MRF) retarder braking moment simulation
分类号:
U463.51
DOI:
10.3969/j.issn.1672-4348.2015.06.008
文献标志码:
A
摘要:
随着汽车工业的进步,商用汽车逐步向高速及大型化发展,制动安全问题日益突出。安装辅助制动装置是实现大型车辆安全制动的重要途径之一。文章分析传统电涡流缓速器及液力缓速器优缺点,设计一种新型的单盘型客车磁流变缓速器。该缓速器在挤压-剪切混合模式下工作;以磁流变液(MRF)的流变特性为基础,推导该缓速器制动力矩计算公式,并在MATLAB环境下对该制动力矩公式进行仿真和分析,结果显示客车磁流变缓速器制动力矩主要与磁场强度大小有关,与转速和磁流变液间隙厚度关系很小。
Abstract:
With the advance of automotive industry, commercial vehicles are gradually developing into high speed and large-scale vehicles. As the braking function of the commercial vehicle has faced great challenges, installing auxiliary braking device is an effective way to achieve the safe braking of large-scale vehicles. The advantages and disadvantages of the traditional eddy current retarder and magnetorheological retarder were analysed. A novel coach single-plate magnetorheological retarder was designed, which operates under compression plus shear mode. Based on the rheological properties of magnetorheological fluid (MRF), the braking moment was derived and simulated. The results indicate that the braking moment mainly depends on the intensity of magnetic field and is hardly affected by the speed and the thickness of MRF.

参考文献/References:

[1] Huang J, Zhang J Q, Yang Y. et al. Analysis and design of a cylindrical magneto-rheological fluid brake[J]. Journal of Materials Processing and Technology,2002,129: 559-562.
[2] Li W H, Du H. Design and experimental evaluation of a magnetorheological brake[J]. Int J Adv Manuf Technology,2003,21:508-515.
[3] Sapinski B, Bydon S. Magnetorheological rotary brake:analysis, design considerations and experimental evaluation[J]. Engineering Transactions,2006,54(3):233-247.
[4] Edward J P, Luis D, Falcao da Luz,et al.A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller[J].Mechatronics,2006(16):405-416.
[5] Sukhwani V K, Hirani H. Design, development, and performance evaluation of high-speed magnetorheological brakes[J]. Journal of Materials: Design and Applications,2008,222:73-82.
[6] Nguyen Q H, Choi S B .Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat[J].Smart Materials and Structures,2010(19):1-6.
[7] Tang X, Zhang X, Tao R, et al. Structure-enhanced yield stress of magnetorheological fluids[J]. Journal of Applied Physics,2000,87(5):2634-2638.
[8] Kulkarni P, Ciocanel C, Vieira S L, et al. Study of the behavior of MR fluids in squeeze, torsional and valve modes[J]. Journal of Intelligent Material Systems and Structures,2003,14:99-104.
[9] Mazlan S A, Ekreem N B, Olabi A G.The performance of magnetorheological fluid in squeeze mode[J]. Smart Materials and Structures,2007,16:780-785.
[10] Wang D M, Hou Y F .Design and experimental evaluation of a multidisk magnetorheological fluid actuator[J]. Journal of Intelligent Material Systems and Structures,2012,24(5):640-650.
[11] Kikuchi T, Kobayashi K, Inoue A . Gap-size effect of compact MR fluid brake[J]. Journal of Intelligent Material Systems and Structures,2011,22:1677-1683.

更新日期/Last Update: 2015-12-25