[1]连立川,刘燕妮,叶怡成.以粒子蜂群网络建立高性能混凝土坍落度模型[J].福建工程学院学报,2015,13(01):1-9.[doi:10.3969/j.issn.1672-4348.2015.01.001]
 Lien Li-Chuan,Liu Yan-Ni,Yeh I-Cheng.Modelling slump model of highperformance concrete using particle bee neural network[J].Journal of FuJian University of Technology,2015,13(01):1-9.[doi:10.3969/j.issn.1672-4348.2015.01.001]
点击复制

以粒子蜂群网络建立高性能混凝土坍落度模型()
分享到:

福建工程学院学报[ISSN:2097-3853/CN:35-1351/Z]

卷:
第13卷
期数:
2015年01期
页码:
1-9
栏目:
出版日期:
2015-02-25

文章信息/Info

Title:
Modelling slump model of highperformance concrete using particle bee neural network
作者:
连立川刘燕妮叶怡成
福建工程学院土木工程学院
Author(s):
Lien Li-Chuan Liu Yan-Ni Yeh I-Cheng
College of Civil Engineering, Fujian University of Techndogy
关键词:
粒子蜂群算法 高性能混凝土 演化运算树 倒传递网络 粒子蜂群网络
Keywords:
particle bee algorithm highperformance concrete genetic operation tree backpropagation network particle bee neural network
分类号:
TU17
DOI:
10.3969/j.issn.1672-4348.2015.01.001
文献标志码:
A
摘要:
以粒子蜂群算法(particle bee algorithm, PBA)结合神经网络(artificial neural network, NN),发展出一套能预测高性能混凝土(highperformance concrete, HPC)坍落度模型的方法。以演化运算树(genetic operation tree, GOT)及倒传递网络(backpropagation network, BPN)2种已发表的方法来比较其准确度。从模型的准确度可知,粒子蜂群网络(particle bee neural network, PBNN)模型预测的准确度高于GOT,但接近BPN的准确度;从参数的影响性可知,PBNN显示水、强塑剂、粗骨材、细骨材、粉煤灰及水泥添加量对于HPC坍落度的影响性大,而高炉矿渣粉用量对HPC坍落度并不敏感,显示各项材料对于坍落度的影响仍具备高度复杂性。
Abstract:
This study used particle bee algorithm (PBA) combined with artificial neural network (NN) to predict the slump model of highperformance concrete (HPC). This study also compared the accuracy of the results with two proposed methods: genetic operation tree (GOT) and backpropagation network (BPN). The results show that particle bee neural network (PBNN) is more accurate than GOT and closer to BPN. Besides, the addition amount of the parameters such as water, super plasticizer, coarse aggregate, fine aggregate, fly ash and cement has a high influence on the slump of HPC, while the amount of blastfurnace slag has a small influence on the slump of HPC. It shows that the impacts of those materials on the slump are still a high degree of complexity.

参考文献/References:

[1] 黄兆龙.混凝土性质与行为[M].台北:詹氏书局,1999.
[2] 沈得县.含波索兰材料高性能混凝土之配比技术及力学性质研究(I)[C]//科技部HPC研究成果推广应用研讨会,台北:“科技部”,1999:107-112.
[3] Chang T P, Chung F C, Lin H C. A mix proportioning methodology for highperformance concrete[J]. Journal of the Chinese Institute of Engineers,1996,19(6):645-655.
[4] Yeh IC and Lien L C. Knowledge discovery of concrete material using genetic operation trees[J]. Expert Systems with Applications,2009,36(3):5807-5812.
[5] 叶怡成. 免疫算法于高性能混凝土配比设计多目标优化之研究(1/2)[R].台北:“科技部”,2004.
[6] Yeh IC. Modeling of strength of high performance concrete using artificial neural networks[J]. Cement and Concrete Research,1998,28(12):1797-1808.
[7] Yeh IC. Modeling concrete strength with augmentneuron networks[J]. ASCE, Journal of Materials in Civil Engineering,1998,10(4):263-268.
[8] Yeh IC. Design of high performance concrete mixture using neural networks[J]. ASCE, Journal of Computing in Civil Engineering,1999,13(1):36-42.
[9] Oztas A, Pala M, Ozbay E, et al. Predicting the compressive strength and slump of high strength concrete using neural network[J]. Construction and Building Materials,2005,20:769-775.
[10] Lin J T, Wang T, Lin X J. Prediction method of concrete compressive strength based on artificial neural network[J]. Journal of Building Materials,2005,8(6):677-681.
[11] Chen L. A study of applying macro evolutionary genetic programming to concrete strength estimation[J]. ASCE, Journal of Computing in Civil Engineering,2003,17(4):290-294.
[12] Chen L, Tasi C S, Chen H M. A study of applying grammar evolution to concrete strength estimation[J]. Chung Hua Journal of Science and Engineering,2004,2(2):55-62.
[13] Davis L. Handbook of Genetic Algorithms[M]. New York: Van No Strand Reinhold,1991.
[14] Holland J H. Adaptation in Natural and Artificial System[M]. Ann Arbor: University of Michigan Press,1975.
[15] Kennedy J, Eberhart R C. Particle swarm optimization[C]// Proceedings of the 1995 IEEE International Conference on Neural Networks,1995,4:1942-1948.
[16] Pham D T, Koc E, Ghanbarzadeh A, et al. The bees algorithm—a novel tool for complex optimization problems[C]// Proceedings of the Second International Virtual Conference on Intelligent Production Machines and Systems,2006,454-461.
[17] Lien L C, Cheng M Y. Particle bee algorithm for tower crane layout with material quantity supply and demand optimization[J]. Automation in Construction,2014,45(9):25-32.
[18] Lien L C, Cheng M Y. A hybrid swarm intelligence based particlebee algorithm for construction site layout optimization[J]. Expert Systems with Applications,2012,39(10):9642-9650.
[19] Cheng M Y, Lien L C. A hybrid AIbased particle bee algorithm (PBA) for benchmark functions and facility layout optimization[J]. ASCE, Journal of Computing in Civil Engineering,2012,26(5):612-624.
[20] Cheng M Y, Lien L C. A hybrid AIbased particle bee algorithm (PBA) for facility layout optimization[J]. Engineering with Computers,2011,28(1):57-69.
[21] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation,2009,214:108-132.

更新日期/Last Update: 2015-02-25