[1]蒋海斌,陈巧玲,姚少波.有限拉莫尔半径效应对电阻性气球模的影响[J].福建工程学院学报,2014,12(03):263-267.[doi:10.3969/j.issn.1672-4348.2014.03.013]
 Jiang Haibin,Chen Qiaolin,Yao Shaobo.Effect of finite Larmor radius on resistive ballooning modes[J].Journal of FuJian University of Technology,2014,12(03):263-267.[doi:10.3969/j.issn.1672-4348.2014.03.013]
点击复制

有限拉莫尔半径效应对电阻性气球模的影响()
分享到:

福建工程学院学报[ISSN:2097-3853/CN:35-1351/Z]

卷:
第12卷
期数:
2014年03期
页码:
263-267
栏目:
出版日期:
2014-06-29

文章信息/Info

Title:
Effect of finite Larmor radius on resistive ballooning modes
作者:
蒋海斌陈巧玲姚少波
福建工程学院数理系
Author(s):
Jiang Haibin Chen Qiaolin Yao Shaobo
Mathematics and Physics Department, Fujian University of Technology
关键词:
气球模 有限拉莫尔半径效应 回旋粘滞
Keywords:
ballooning mode finite Larmor radius effect gyroviscosity
分类号:
O534.2
DOI:
10.3969/j.issn.1672-4348.2014.03.013
文献标志码:
A
摘要:
基于有限拉莫半径磁流体理论(Finite Larmor radius magnetohydrodynamic)模型,采用WKB (Wentzel、 Kramers和Brillouin)的多重尺度分析方法详细推导了一组用于研究托卡马克等离子体中高n电阻性气球模的本征方程。在忽略了回旋粘滞效应和电阻效应之后该方程可以回到传统理想气球模方程。文章中的气球模本征方程可用于研究带耗散性质的电阻率与无耗散的回旋粘滞性的对气球模的竞争影响。
Abstract:
In this paper, the effect of finite Larmor radius (FLR) on the high resistive ballooning modes was studied on the basis of FLR magnetohydrodynamic (FLRMHD) theory. A set of linear FLR resistive ballooning mode equations were derived by using WKB multiscale analysis method developed by Wentzel, Kramer and Brillouin, which were reduced to the ideal ballooning mode equation when the FLR effect and resistive effect were neglected. The results indicate that the derived ballooning mode equations are applicable in analysing the competitive effects of dissipative resistivity and nondissipative gyroviscosity on the ballooning modes.

参考文献/References:

[1] Connor J W, Hastie R J, Taylor J B. Shear, periodicity and plasma ballooning modes[J]. Physical Review Letters,1978,40:396-399.
[2] Coppi B, Rosenbluth M N. Collisional interchange instabilities in shear and stabilized systems[J]. Plasma Physics and Controlled Nuclear Fusion Research,1965,1:617-641.
[3] Dobrott D, Nelson D B, Greene J M, et al. Theory of ballooning modes in tokamaks with finite shear[J]. Physical Review Letters,1977,39:943-946.
[4] Tang W M, Connor J W,Hastie R J. Kineticballooningmode theory in general geometry[J]. Nuclear Fusion,1980,20:1439-1453.
[5] Simakov A, Catto P. Drift kinetic equation exact through second order in gyroradius expansion[J]. Physics of Plasmas,2005(12):012105.
[6] Grandgirard V, Brunetti M, Bertrand P, et al. A driftkinetic semilagrangian 4D code for ion turbulence simulation[J]. Journal of Computational Physics,2006,217:395-423.
[7] Liu Y, Chu M S, Gimblett C G, et al. Magnetic drift kinetic damping of the resistive wall mode in large aspect ratio tokamaks[J]. Physics of Plasmas,2008,15:092505.
[8] Smolyakov A, Garbet X. Drift kinetic equation in the moving reference frame and reduced magnetohydrodynamic equations[J]. Physics of Plasmas,2010,17,042105.
[9] Catto P, Tsang K. Linearized gyro kinetic equation with collisions[J]. Physics of Fluids,1977,20:396-401.
[10] Peeters A, Strintzi D. The effect of a uniform radial electric field on the Toroidal ion temperature gradient mode[J]. Physics of Plasmas,2004(11):3748-3751.
[11] Lin Z, Hahm T S, Lee W W, et al. Turbulent transport reduction byy zonal flows: Massively parallel simulations[J]. Science,1998,281:1835-1837.
[12] Wang W X, Lin Z, Tang W M, et al. Gyrokinetic simulation of global turbulent transport properties in tokamak experiments[J]. Physics of Plasmas,2006,13:092505.
[13] Roberts K V, Taylor J B. Magnetohydrodynamic equations for finite Larmor radius[J]. Physical Review Letters,1962(8):197-198.
[14] Braginskii S. Transport processes in a Plasma[J]. Reviews of Plasma Physics,1965(1):205-211.
[15] Ruden E. The polarity dependent effect of gyroviscosity on the flow shear stabilized rayleightaylor instability and an application to the plasma focus[J].Physics of Plasmas,2004(11):713-723.
[16] Scheffel J, Faghihi M. FiniteLarmorradius effects on zpinch stability[J]. Journal of Plasma Physics,2009,41:427-439.
[17] Qiu M X. Huang L, Jian G D. Finite larmor radius magnetohydrodynamic analysis of the RayleighTaylor instability in Z Pinches with sheared axial flow[J]. Physics of Plasmas,2007(14):032111.
[18] Jian G D, Huang L, Qiu X M. Assembling stabilization of the RayleighTaylor instability by the Effects of finite Larmor radius and sheared axial flow[J]. Plasma Science And Technology,2005(7):2805-2809.
[19] Huba J D. Finite Larmor radius magnetohydrodynamics of the RayleighTaylor instability[J]. Physics of Plasmas,1996(3):2523-2532.
[20] Dewar R, Glasser A. Ballooning mode spectrum in general toroidal systems[J]. Physics of Fluids,1983,26:3038-3052.
[21] Grassie K, Krech M. A complete set of resistive compressive ballooning equations for two dimensional flow equilibria[J]. Physics of Fluids B: Plasma Physics,1990(2):536.
[22] Cooper W A. Ballooning Instabilities In Tokamaks with Sheared Toroidal Flows[J].Plasma Physics and Controlled Fusion,1988,30:1805-1812.
[23] Waelbroeck F L, Chen L. Ballooning instabilities in Tokamaks withsheared toroidal flows[J]. Physics of Fluids B: Plasma Physics,1991(3):601-610.

相似文献/References:

[1]蒋海斌.可压缩性高n气球模有限拉莫尔半径磁流体理论分析[J].福建工程学院学报,2015,13(01):74.[doi:10.3969/j.issn.1672-4348.2015.01.015]
 Jiang Haibin.Finite Larmor radius magnetohydrodynamic analysis of the compressive high n ballooning mode[J].Journal of FuJian University of Technology,2015,13(03):74.[doi:10.3969/j.issn.1672-4348.2015.01.015]

更新日期/Last Update: 2014-06-25