参考文献/References:
[1] Connor J W, Hastie R J, Taylor J B. Shear, periodicity and plasma ballooning modes[J]. Physical Review Letters,1978,40:396-399.
[2] Coppi B, Rosenbluth M N. Collisional interchange instabilities in shear and stabilized systems[J]. Plasma Physics and Controlled Nuclear Fusion Research,1965,1:617-641.
[3] Dobrott D, Nelson D B, Greene J M, et al. Theory of ballooning modes in tokamaks with finite shear[J]. Physical Review Letters,1977,39:943-946.
[4] Tang W M, Connor J W,Hastie R J. Kineticballooningmode theory in general geometry[J]. Nuclear Fusion,1980,20:1439-1453.
[5] Simakov A, Catto P. Drift kinetic equation exact through second order in gyroradius expansion[J]. Physics of Plasmas,2005(12):012105.
[6] Grandgirard V, Brunetti M, Bertrand P, et al. A driftkinetic semilagrangian 4D code for ion turbulence simulation[J]. Journal of Computational Physics,2006,217:395-423.
[7] Liu Y, Chu M S, Gimblett C G, et al. Magnetic drift kinetic damping of the resistive wall mode in large aspect ratio tokamaks[J]. Physics of Plasmas,2008,15:092505.
[8] Smolyakov A, Garbet X. Drift kinetic equation in the moving reference frame and reduced magnetohydrodynamic equations[J]. Physics of Plasmas,2010,17,042105.
[9] Catto P, Tsang K. Linearized gyro kinetic equation with collisions[J]. Physics of Fluids,1977,20:396-401.
[10] Peeters A, Strintzi D. The effect of a uniform radial electric field on the Toroidal ion temperature gradient mode[J]. Physics of Plasmas,2004(11):3748-3751.
[11] Lin Z, Hahm T S, Lee W W, et al. Turbulent transport reduction byy zonal flows: Massively parallel simulations[J]. Science,1998,281:1835-1837.
[12] Wang W X, Lin Z, Tang W M, et al. Gyrokinetic simulation of global turbulent transport properties in tokamak experiments[J]. Physics of Plasmas,2006,13:092505.
[13] Roberts K V, Taylor J B. Magnetohydrodynamic equations for finite Larmor radius[J]. Physical Review Letters,1962(8):197-198.
[14] Braginskii S. Transport processes in a Plasma[J]. Reviews of Plasma Physics,1965(1):205-211.
[15] Ruden E. The polarity dependent effect of gyroviscosity on the flow shear stabilized rayleightaylor instability and an application to the plasma focus[J].Physics of Plasmas,2004(11):713-723.
[16] Scheffel J, Faghihi M. FiniteLarmorradius effects on zpinch stability[J]. Journal of Plasma Physics,2009,41:427-439.
[17] Qiu M X. Huang L, Jian G D. Finite larmor radius magnetohydrodynamic analysis of the RayleighTaylor instability in Z Pinches with sheared axial flow[J]. Physics of Plasmas,2007(14):032111.
[18] Jian G D, Huang L, Qiu X M. Assembling stabilization of the RayleighTaylor instability by the Effects of finite Larmor radius and sheared axial flow[J]. Plasma Science And Technology,2005(7):2805-2809.
[19] Huba J D. Finite Larmor radius magnetohydrodynamics of the RayleighTaylor instability[J]. Physics of Plasmas,1996(3):2523-2532.
[20] Dewar R, Glasser A. Ballooning mode spectrum in general toroidal systems[J]. Physics of Fluids,1983,26:3038-3052.
[21] Grassie K, Krech M. A complete set of resistive compressive ballooning equations for two dimensional flow equilibria[J]. Physics of Fluids B: Plasma Physics,1990(2):536.
[22] Cooper W A. Ballooning Instabilities In Tokamaks with Sheared Toroidal Flows[J].Plasma Physics and Controlled Fusion,1988,30:1805-1812.
[23] Waelbroeck F L, Chen L. Ballooning instabilities in Tokamaks withsheared toroidal flows[J]. Physics of Fluids B: Plasma Physics,1991(3):601-610.