[1]詹友基、江宋然、许永超、左振、周家骐.纳米晶粒硬质合金平面磨削表面粗糙度研究[J].福建工程学院学报,2020,18(06):511-517.[doi:10.3969/j.issn.1672-4348.2020.06.001]
 ZHAN Youji,JIANG Songran,XU Yongchao,et al.Research on surface roughness of nano-grain cemented carbide surface grinding[J].Journal of FuJian University of Technology,2020,18(06):511-517.[doi:10.3969/j.issn.1672-4348.2020.06.001]
点击复制

纳米晶粒硬质合金平面磨削表面粗糙度研究()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第18卷
期数:
2020年06期
页码:
511-517
栏目:
出版日期:
2020-12-25

文章信息/Info

Title:
Research on surface roughness of nano-grain cemented carbide surface grinding
作者:
詹友基、江宋然、许永超、左振、周家骐
福建工程学院机械与汽车工程学院
Author(s):
ZHAN Youji12 JIANG Songran1 XU Yongchao1 ZUO Zhen1 ZHOU Jiaqi
School of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
纳米晶粒硬质合金磨削表面粗糙度
Keywords:
nano-grain cemented carbide grinding surface roughness
分类号:
TG58
DOI:
10.3969/j.issn.1672-4348.2020.06.001
文献标志码:
A
摘要:
采用树脂结合剂金刚石砂轮对纳米晶粒硬质合金进行平面磨削试验,结合单因素和正交实验研究不同磨削要素即磨削深度ap、工件进给速度vw、砂轮线速度vs 对磨削纳米晶粒硬质合金表面粗糙度的影响。结果表明,磨削深度ap 和工件进给速度vw 增加,表面粗糙度增加?砂轮线速度vs 增加,表面粗糙度减小。磨削3 要素对纳米晶粒硬质合金表面粗糙度影响程度的大小依次是工件进给速度、砂轮线速度、磨削深度。因此,为了获得好的表面质量可以采取小进给、小切深、高砂轮线速度的组合方式进行磨削?同时建立了磨削纳米晶粒硬质合金的表面粗糙度数学模型并验证了模型的可靠性。
Abstract:
The surface grinding test of nano-grained cemented carbide was conducted with resin bond diamond grinding wheels, combined with single factor test and orthogonal experiment to study the effects of the grinding elements, namely grinding depth ap, workpiece feed speed vw, grinding wheel linear speed vs, on the surface roughness of nano-grain cemented carbide. Test results show that once the grinding depth ap and workpiece feed speed vw increase, the surface roughness increases; once the grinding wheel linear speed vs increases, the surface roughness decreases. The influence of the three elements on the surface roughness of nano-grained cemented carbide can be determined from large to small in the order of the workpiece feed speed, the linear speed of the grinding wheel, and the grinding depth. Therefore, in order to obtain a good surface quality, a combination of small feed, small depth of cut, and high grinding wheel linear speed can be used for grinding; at the same time, a mathematical model of surface roughness for grinding nano-grained cemented carbide was established and its reliability was verified.

参考文献/References:

[1] 杨军, 黄向明, 蒋福星, 等. 纳米硬质合金高速深磨工艺试验研究[J]. 现代制造工程, 2015(10): 12-17, 21.[2] 詹友基. 陶瓷结合剂金刚石砂轮高速磨削硬质合金的机理研究[D]. 泉州: 华侨大学,2013.[3] 邱健, 詹友基, 贾敏忠. 陶瓷结合剂金刚石砂轮磨削超细晶粒硬质合金的表面粗糙度研究[J]. 工具技术, 2014, 48(9): 20-24.[4] 任莹晖, 张璧, 周志雄. 纳米结构硬质合金磨削的表面形貌和材料去除机理研究[J]. 中国机械工程, 2009, 20(8): 896-901.[5] 宋鹏涛, 刘泓, 康露, 等. 磨削参数对陶瓷结合金刚石砂轮磨削硬质合金表面粗糙度的影响[J]. 工具技术, 2012, 46(2): 29-31.[6] 原一高, 张肖肖, 丁健俊, 等. 磨削参数对超细硬质合金磨削表面粗糙度的影响[J]. 工具技术, 2012, 46(5): 41-44.[7] 郐吉才, 张飞虎. 纳米硬质合金的ELID磨削[J]. 东北林业大学学报, 2008, 36(12): 57-58.[8] ROWE W. Grinding technology-theory and applications of machining with abrasives[J]. Tribology International, 1990, 23(6): 443.[9] 高超, 王生, 王会, 等. 砂带磨削表面粗糙度理论预测及灵敏度分析[J]. 表面技术, 2018, 47(11): 295-305.[10] CHEN J, HUANG H, XU X. An experimental study on the grinding of alumina with a monolayer brazed diamond wheel[J]. The International Journal of Advanced Manufacturing Technology, 2009, 41(1/2): 16-23.[11] ABDULLAH A, PAK A, FARAHI M, et al. Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide[J]. Journal of Materials Processing Technology, 2007, 183(2/3): 165-168.[12] 张大将, 王颖达, 陈世隐, 等. 钎焊金刚石砂轮磨削YG8硬质合金的试验研究[J]. 超硬材料工程, 2017, 29(3): 19-23.[13] 田笑. 超细晶粒硬质合金磨削实验研究[D]. 福州: 福建工程学院, 2020.

更新日期/Last Update: 2020-12-25