[1]刘雪华、林伟明、商川、杨斯盛.镁合金上化学Ni-P-硬质氧化物复合镀层[J].福建工程学院学报,2020,18(03):241-245.[doi:10.3969/j.issn.1672-4348.2020.03.007]
 LIU Xuehua,LIN Weiming,SHANG Chuan,et al.Ni-P-hard oxide composite coatings on Mg alloy substrate[J].Journal of FuJian University of Technology,2020,18(03):241-245.[doi:10.3969/j.issn.1672-4348.2020.03.007]
点击复制

镁合金上化学Ni-P-硬质氧化物复合镀层()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第18卷
期数:
2020年03期
页码:
241-245
栏目:
出版日期:
2020-06-25

文章信息/Info

Title:
Ni-P-hard oxide composite coatings on Mg alloy substrate
作者:
刘雪华、林伟明、商川、杨斯盛
福建工程学院材料科学与工程学院
Author(s):
LIU Xuehua LIN Weiming SHANG Chuan YANG Sisheng
School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Material Preparation and Processing
关键词:
复合Ni-P-硬质氧化物镀层溶胶凝胶法制备耐磨及耐腐蚀性
Keywords:
composite coatings with Ni-P-hard oxides sol-gel method preparation corrosion and wear resistance
分类号:
TG174.44
DOI:
10.3969/j.issn.1672-4348.2020.03.007
文献标志码:
A
摘要:
结合溶胶-凝胶法和化学镀方法,于镁合金基材表面成功制备了均匀的复合Ni-P-SiO2 / TiO2 /Al2O3镀层,采用扫描电镜(SEM)、光学显微镜(OM)、摩擦磨损试验及电化学方法,对比研究了Mg 基材、基础Ni-P 镀层与3 种复合镀层的显微组织结构、耐磨性及耐腐蚀性。 结果表明,加入3 种溶胶所制备的复合镀层较Mg 基材大幅度提高耐磨性和耐腐蚀性?3 种复合镀层较Ni-P 镀层具有更加均匀、致密的显微形貌,减少了直接加入纳米粉末的团聚,同时耐磨和耐蚀性改善。 其中Ni-P-SiO2 复合镀层具有较高的显微硬度HV513 和最低的摩擦系数0.34,最高的腐蚀电位-1.18V 及较小的腐蚀电流密度9.5×10-3mA?? cm-2。 故综合制备最佳工艺,并考虑节能减排因素,Ni-P-SiO2复合镀层可作为性能优良的Mg 合金耐磨、耐腐蚀镀层使用,于实际工业生产大有裨益。
Abstract:
The sol-gel method and electroless plating method were combined to successfully prepare three homogeneous composite coatings composed of nickel-phosphorus-hard oxides (Ni-P-SiO2/TiO2/Al2O3) on the surface of the magnesium alloy substrate. Scanning electron microscopy (SEM), optical microscopy (OM), friction and wear tests, and electrochemical methods were used to compare the microstructure, wear resistance and corrosion resistance of Mg substrates, basic Ni-P coatings and three composite coatings. Results show that compared with the Mg substrate, the composite coatings prepared by adding the three sols had their wear resistance and corrosion resistance greatly improved. Compared with the Ni-P coating, the three composite coatings have more uniform and dense micro-morphology, which reduces the agglomeration caused by directly adding nano-powder, while improving the wear resistance and corrosion resistance.The Ni-P-SiO2 composite coating is found to have a superior microhardness of HV513, a minimum friction coefficientof 0.34, and a most positive corrosion potential of -1.18V and a minor corrosion current of 9.5×10-3m A·cm-2. Therefore, considering the best preparation technology and energy saving and emission reduction factors, Ni-P-SiO2 composite coating can be used as a wear-resistant and corrosion-resistant coating of Mg alloy for its excellent properties, which is beneficial to practical industrial production.

参考文献/References:

[1] SUN C, GUO X, WANG S, et al. Homogenization pretreatment and electroless Ni-P plating on AZ91D magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3825-3833.[2] 张斌韬. 汽车用AZ31B镁合金表面化学沉积Ni-P/SiO2镀层及腐蚀分析[J]. 电镀与环保, 2018, 38(2): 20-22.[3] SADREDDINI S, SALEHI Z, RASSAIE H. Characterization of Ni-P-SiO2 nano-composite coating on magnesium[J]. Applied Surface Science, 2015, 324: 393-398.[4] 龙小丹. 镁合金表面Ni-P-纳米TiO2复合镀工艺及镀层性能研究[D]. 郑州: 郑州大学,2009.[5] 任晨星, 龙小丹, 曹文博, 等. 铸态镁合金Ni-P-纳米TiO2化学复合镀的初始沉积机理[J]. 材料保护, 2009, 42(9): 4-6.[6] HU R, SU Y, LIU Y, et al. Deposition process and properties of electroless Ni-P-Al2O3 composite coatings on magnesium alloy[J]. Nanoscale Research Letters, 2018, 13(1): 198[7] SADREDDINI S, RAHEMI A, RASSAIE H. Corrosion behavior and microhardness of Ni-P-SiO2-Al2O3 nano-composite coatings on magnesium alloy[J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2032-2039.[8] KARTHIKEYAN S Sriniv K N, Vasudevan T, John S. 化学镀Ni-P-Cr2O3和Ni-P-SiO2复合镀层的研究[J]. 电镀与涂饰, 2007,26(1): 1-6.[9] CHEN W, GAO W, HE Y. A novel electroless plating of Ni-P-TiO2 nano-composite coatings[J]. Surface and Coatings Technology, 2010, 204(15): 2493-2498.[10] 候俊英. 热处理对Ni-P-SiO2复合镀层性能的影响 [J]. 金属热处理, 2010, 35(9): 91-93.

更新日期/Last Update: 2020-06-25