[1]戴贵龙,侯根富,叶靖,等.多功能太阳炉光路聚集传输设计与实验测量[J].福建工程学院学报,2017,15(06):577-581.[doi:10.3969/j.issn.1672-4348.2017.06.014]
 Dai Guilong,Hou Genfu,Ye Jing,et al.Design and experimental measurement of sunlight concentration and transmission of a multifunctional solar furnace[J].Journal of FuJian University of Technology,2017,15(06):577-581.[doi:10.3969/j.issn.1672-4348.2017.06.014]
点击复制

多功能太阳炉光路聚集传输设计与实验测量()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第15卷
期数:
2017年06期
页码:
577-581
栏目:
出版日期:
2017-12-25

文章信息/Info

Title:
Design and experimental measurement of sunlight concentration and transmission of a multifunctional solar furnace
作者:
戴贵龙侯根富叶靖张慈枝
福建工程学院生态环境与城市建设学院
Author(s):
Dai Guilong Hou Genfu Ye Jing Zhang Cizhi
School of Ecological Environment and Urban Construction, Fujian University of Technology
关键词:
多功能太阳炉 功率调节 红外成像 蒙特卡洛射线踪迹法
Keywords:
multifunctional solar furnace power adjustment infrared imaging MCRTM
分类号:
O436
DOI:
10.3969/j.issn.1672-4348.2017.06.014
文献标志码:
A
摘要:
设计制造一种由抛物面聚集器、百叶窗和反射板组成的成本低、功率可调节多功能太阳炉装置。通过建立太阳炉光束聚集传输模型,对太阳炉的光热转换性能进行了理论分析和朗伯靶红外温度成像实验测量。结果表明该多功能太阳具有良好的太阳能聚集与调节特性,太阳光斑能流密度值随百叶窗叶片张角正弦变化。实验表明朗伯靶上太阳光斑中心处热平衡温度达到140 ℃,光斑轮廊形状稳定。结论对太阳炉系统的研究发展提供重要参考依据。
Abstract:
A low-cost solar furnace with adjustable power was designed and developed, which consists of a parabolic concentrator, a shutter and a reflective plane.By establishing the model of sunlight’s concentration and transmission of the solar furnace, its photothermal conversion performance received both theoretical analysis and experimental measurement with the infrared imaging method. Results show that this furnace has very good concentration and adjustment of solar energy, and the density of the focal spot’s energy flow varies with the sine of the shutter’s blade angle.The figure of the focal spot is quite steady and clear when the temperature of the concentrated solar flux spot is about 140℃. The conclusions are useable for the research and development of solar furnaces.

参考文献/References:

[1] Hernandez D,Olalde G, Bonnier G, et al. Evaluation of the application of a solar furnace to study the suitability of metal oxides to be used as secondary reference points in the range 2000~3000°C[J]. Measurement,2003,34(2):101-109.
[2] Oliveira F A C,Fernandes J C, Badie J M, et al. High meta-stability of tungsten sub-carbide W2C formed from tungsten/carbon powder mixture during eruptive heating in a solar furnace[J]. International Journal of Refractory Metals & Hard Materias,2007,25(1):101-106.
[3] Gordon J M,Babai D, Feuermann D. A high-irradiance solar furnace for photovoltaic characterization and nanomaterial synthesis[J]. Solar Energy Materials & Solar Cells,2011,95(3):951-956.
[4] 陈飞,李明,季旭,等.太阳能槽式系统反射镜玻璃厚度对聚光特性的影响[J].光学学报,2012,32(12):111-115.
[5] 许成木,李明,季旭,等.槽式太阳能聚光器焦面能流密度分布的频数统计分析[J].光学学报,2013,33(4):53-59.
[6] 何梓年.太阳能热利用[M].合肥:中国科学技术大学出版社,2009:470-480.
[7] Johnston G. Focal region measurements of the 20 m2?tiled dish at the Australian National University[J]. Solar Energy,1998,63(2):117-124.
[8] Shuai Yong, Xia Xinlin, Tan Heping. Numerical study of radiation characteristics in a dish solar collector system[J]. Journal of Solar Energy Engineering,2008,130(2):021001-1~8.
[9] 刘颖,戴景民,朗治国,等.旋转抛物面聚光器焦面能流密度分布的有限元分析[J].光学学报,2007,27(10):1775-1778.
[10] 王云峰,季杰, 何伟,等.抛物碟式太阳能聚光器的聚光特性分析与设计[J].光学学报,2012,32(1):206-213.
[11] Lee H, Chai K, Kim J, et al. Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux[J]. Energy,2013,66:63-69.
[12] Buie D. The effective size of the solar cone for solar concentrating systems[J]. Solar Energy,2003,74(5):417-427.
[13] 戴贵龙,郭永辉.一种大聚光比聚集太阳能流密度分布的红外反射测量法[J].光学学报,2014,34(7):125-130.

更新日期/Last Update: 2017-12-25