[1]林国良,刘敏毅,陈庆华.桐壳纤维预处理及可及度的表征[J].福建工程学院学报,2016,14(04):356-361.[doi:10.3969/j.issn.1672-4348.2016.04.009]
 Lin Guoliang,Liu Minyi,Chen Qinghua.The pretreatment and accessibility characterization of tung shell fiber[J].Journal of FuJian University of Technology,2016,14(04):356-361.[doi:10.3969/j.issn.1672-4348.2016.04.009]
点击复制

桐壳纤维预处理及可及度的表征()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第14卷
期数:
2016年04期
页码:
356-361
栏目:
出版日期:
2016-08-25

文章信息/Info

Title:
The pretreatment and accessibility characterization of tung shell fiber
作者:
林国良刘敏毅陈庆华
福建工程学院土木工程学院
Author(s):
Lin Guoliang Liu Minyi Chen Qinghua
College of Civil Engineering, Fujian University of Technology
关键词:
桐壳纤维 氢键 可及度 分峰拟合
Keywords:
tung shell fiber hydrogen bond accessibility peak-differenating
分类号:
TQ352.62
DOI:
10.3969/j.issn.1672-4348.2016.04.009
文献标志码:
A
摘要:
对桐壳纤维分别施予超声波、丝光化(加热30、60、90 ℃)、丝光化(冷却-30、-5、0 ℃)3种方法预处理,采用XRD、FTIR、SEM进行表征,研究结果表明经过丝光化处理后,植物纤维的可及度有一定程度的提高,桐壳纤维部分由celluloseⅠ结构转变为celluloseⅡ结构,而同等条件下的水处理则不出现这样的变化;此外,超声波处理对植物纤维可及度的提高最为有利。研究证实了氢键含量及类型可以与红外结晶指数、结晶度指数从不同维度佐证植物纤维可及度的变化,红外结晶指数可宏观指示结晶程度,结晶度指数佐证桐壳纤维聚集态结构的有序程度,而分子间氢键含量可指示桐壳纤维内部结构状态的不同。
Abstract:
To research the accessibility and structure of tung shell fiber and the effects of N-O ′KI, CrI index, hydrogen bond content on the accessibility of the tung shell fiber, ultrasonic wave, mercerization (heating at 30,60,90 ℃) and mercerization (cooling at -30,-5,0 ℃) were adopted to pretreat the tung shell fiber. XRD, FTIR and SEM were used to characterize the products. The N-O ′KI, CrI index, (inter-molecule) hydrogen bond content of the tung shell fiber decrease after mercerization, indicating the increase of the accessibility of the tung shell fiber. The O(6)H-O(2)’ appeared by resolution of hydrogen-bonded OH stretching, which is consistent with the characterization of FTIR, as the structure of the tung shell fiber changed from cellulose I to cellulose II after mercerization treatment. The structural change is different from that of the Tung shell fiber pretreated in water, with the accessibility increasing the most under the ultrasonic wave. The results confirm that the content and patterns of the hydrogen bond, N-O ′KI and CrI index can be combined to characterize the accessibility of the plant fibers from different dimensions. The N-O′ KI illustrates the crystallization degree from a macroscopic view, the CrI index shows the order degree of the aggregate structure of the tung shell fiber, while the hydrogen bonding content reflects the difference of the internal structure of the fiber.

参考文献/References:

[1] Gao Peiji, Liu Jie, Zhang Yuzhong. The change of the supermolecular structure in the process of biodegradation of natural cellulose:Discussion on the role of the breaking of hydrogen bond in the degradation of cellulose[J].Progress in Natural Science,1998,8(4):391-396.
[2] Nam S H, French A D, Condon B D, et al. Segal crystallinity index revisited by the simulation of Xray diffraction patterns of cotton cellulose Iβ and cellulose II[J].Carbohydrate Polymers,2016,135(1):1-9.
[3] Miura K, Nakano T. Analysis of mercerization process based on the intensity change of deconvoluted resonances of 13C CP/MAS NMR: Cellulose mercerized under cooling and noncooling conditions[J]. Materials Science and Engineering: C,2015,53(1):189-195.
[4] Miranda M I G, Bica C I D, Nachtigall S M B, et al. Kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSCTGA and MDSC techniques[J]. Thermochimica Acta,2013,565(10):65-71.
[5] Abidi N, Cabrales L, Haigler C H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy[J]. Carbohydrate Polymers,2012,87(1):598-606.
[6] Mutungi Christopher, Passauer Lars, Onyango Calvin, et al. Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with Xray diffraction and 13C CP/MAS NMR spectroscopy[J]. Carbohydrate Polymers,2014,100(16):9-16.
[7] Lu Huilin, Ma Yongwen, Wan Jinquan, et al. Research on hydrogen bonding patterns of holocellulose by XRD and FTIR[J].Transactions of China Pulp and Paper,2011,26(1):1-5.
[8] Yan Wanga, Jie Liana, Wana Jinquan, et al. A supramolecular structure insight for conversion property of cellulose in hot compressed water:Polymorphs and hydrogen bonds changes[J].Carbohydrate Polymers,2015,133(20):94-103.
[9] Sang Youn oh, Yoo Dong Il, Shin Younsook, et al. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of Xray diffraction and FTIR spectroscopy[J].Carbohydrate Research,2005,340(15):2376-2391.
[10] Karuna N, LuZhang, Walton J H, et al. The impact of alkali pretreatment and postpretreatment conditioning on the surface properties of rice straw affecting cellulose accessibility to cellulases[J].Bioresource Technology,2014,167:232-240.
[11] Karimi K, Taherzadeh M J. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity[J]. Bioresource Technology,2016,200:1008-1018.
[12] Pnni R, Kontturi E, Tapani V. Accessibility of cellulose: Structural changes and their reversibility in aqueous media[J]. Carbohydrate Polymers,2013,93(2):424-429.
[13] Kolpak F J, Blackwell J. Determination of the structure of cellulose[J]. Macromolecules,1976,9:273-278.
[14] Zhang Meifang, Qin Yuanhang, Ma Jiayu, et al. Depolymerization of microcrystalline cellulose by the combination of ultrasound and Fenton reagent[J]. Ultrasonics Sonochemistry,2016,31:404-408.
[15] Csiszar E, Kalic P, Kobol A, et al. The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films[J]. Ultrasonics Sonochemistry,2016,31:473-480.

更新日期/Last Update: 2016-08-25