[1]姚梅红.钢筋混凝土抗拔灌注桩的抗裂设计[J].福建工程学院学报,2016,14(06):518-525.[doi:10.3969/j.issn.1672-4348.2016.06.002]
 Yao Meihong.Anti-crack design for reinforced concrete anti-uplift cast-in-place pile[J].Journal of FuJian University of Technology,2016,14(06):518-525.[doi:10.3969/j.issn.1672-4348.2016.06.002]
点击复制

钢筋混凝土抗拔灌注桩的抗裂设计()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第14卷
期数:
2016年06期
页码:
518-525
栏目:
出版日期:
2016-12-25

文章信息/Info

Title:
Anti-crack design for reinforced concrete anti-uplift cast-in-place pile
作者:
姚梅红
福建船政交通职业学院 道路工程系
Author(s):
Yao Meihong
Road Construction Department, Fujian Chuangzheng Communications College
关键词:
抗拔灌注桩 预应力 预应力螺纹钢筋 裂缝控制 用钢量
Keywords:
anti-uplift cast-in-situ pile prestress prestressing screw bar crack control steel consumption
分类号:
TU473
DOI:
10.3969/j.issn.1672-4348.2016.06.002
文献标志码:
A
摘要:
通过对不同直径的抗拔灌注桩在不同抗拔荷载、不同裂缝控制等级下的抗裂设计及其纵筋用钢量与造价的对比分析,说明桩纵筋采用普通非预应力钢筋时,因受裂缝宽度的限制,其纵筋拉应力水平明显偏低,桩承受的抗拔力越大,纵筋的应力越小,相比普通钢筋混凝土桩,采用预应力螺纹钢筋的抗拔桩不仅可显著减少用钢量,当抗拔力较高时,还可节省约40%~50%的纵筋造价;同时进一步探讨抗拔桩预应力筋的配置及有效预应力的控制方法。
Abstract:
The anti-cracking design for different uplift caste-in-place piles was analysed in the perspective of consumption and cost of the longitudinal bars. The variables of aforementioned piles include different diameters, different anti-pulling load and different crack control level. Since the experimenal results indicate that the longitudinal bars of pile have a significantly inadequate pulling stress level because of its limitation of maximum crack width, it is concluded that the stress of the longitudinal bar will be lower when the uplift force of the pile is stronger. Compared with common reinforcement concrete piles, the uplift piles containing prestressed screw bar not only reduce the consumption of steel significantly, but also save about 40%~50% of the longitudinal reinforcement cost when the anti-uplift force is high. Moreover, the arrangement for prestressed reinforcement and the control method of the effective prestress are also discussed.

参考文献/References:

[1] 滕延京,王卫东,康景文,等.基础工程技术的新进展[J].土木工程学报,2016,49(4):1-21.
[2] 刘波,徐薇,胡和涛,等.大直径扩底嵌岩桩抗拔承载性状试验与分析[J].安徽理工大学学报(自然科学版),2015,35(2):1-5.
[3] 中华人民共和国建设部. 建筑桩基技术规范:JGJ94-2008[S].北京:中国建筑工业出版社,2008.
[4] 迟铃泉,赵志民,刘金砺,等.抗拔灌注桩后张预应力技术研究与工程应用[C]//刘金砺.桩基工程技术进展2009.北京:中国建筑工业出版社,2009:260-267.
[5] 刘金砺,高文生,邱明兵.建筑桩基技术规范(JGJ94-2008)应用手册[M].北京:中国建筑工业出版社,2010,115-127.
[6] 中华人民共和国建设部.钢筋混凝土设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2010.
[7] 中国国家标准化管理委员会.预应力混凝土用螺纹钢筋:GB/T 20065-2006[S].北京:中国标准出版社,2006.
[8] 中华人民共和国建设部.建筑地基基础设计规范规范:GB 50007-2011[S].北京:中国建筑工业出版社,2011.
[9] 福建省建设工程造价管理总站.福建省建筑工程消耗量定额:FJYD-101-2005[S].北京:中国计划出版社,2005.

相似文献/References:

[1]姚梅红.预应力抗拔扩底桩的设计原理与应用[J].福建工程学院学报,2016,14(03):218.[doi:10.3969/j.issn.1672-4348.2016.03.003]
 Yao Meihong.The evaluation of bearing capacity and the optimization design of anti-floating capacity for forrock-socketed anti-uplift piles[J].Journal of FuJian University of Technology,2016,14(06):218.[doi:10.3969/j.issn.1672-4348.2016.03.003]

更新日期/Last Update: 2016-12-25