[1]刘成武、吴平、李喆、施京凯、吴铭.基于optistruct的电池包结构分析与优化[J].福建工程学院学报,2021,19(01):1-6.[doi:10.3969/j.issn.1672-4348.2021.01.001]
 LIU Chengwu,WU Ping,LI Zhe,et al.Analysis and optimization of battery package structure based on Optistruct[J].Journal of FuJian University of Technology,2021,19(01):1-6.[doi:10.3969/j.issn.1672-4348.2021.01.001]
点击复制

基于optistruct的电池包结构分析与优化()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第19卷
期数:
2021年01期
页码:
1-6
栏目:
出版日期:
2021-02-25

文章信息/Info

Title:
Analysis and optimization of battery package structure based on Optistruct
作者:
刘成武、吴平、李喆、施京凯、吴铭
福建工程学院机械与汽车工程学院
Author(s):
LIU Chengwu WU Ping LI Zhe SHI Jingkai WU Ming
School of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
电池包精细化建模工况分析约束模态分析厚度优化
Keywords:
battery pack refined modeling condition analysis constrained modal analysis thickness optimization
分类号:
U469.72
DOI:
10.3969/j.issn.1672-4348.2021.01.001
文献标志码:
A
摘要:
基于Hyperworks软件对某电池包精细化建模,然后进行多工况和约束模态仿真。仿真结果表明,该电池包在颠簸路面刹车和加速工况下均能满足条件,但在约束模态分析中前两阶模态较低,其中上盖板与路面激振频率接近,产生共振对电池造成破坏。运用Optistruct中的厚度优化方法对上盖进行优化,优化后再次建模仿真。优化后一阶约束模态达到28.4Hz,有效避开了来自路面的共振频率,研究结果可为电池包结构设计提供依据。
Abstract:
A refined model of a certain battery pack was built based on a software, Hyperworks. After that, simulations under multiple load cases and constraint modes were carried out. The simulation results show that the battery pack can meet the conditions under the operating conditions of braking and speeding on the bumpy road. However, the first order and second order modes are lower in the analysis of the constrained mode, in which the excitation frequency of the upper cover plate resonates with that of the road surface, and consequently the resonance does damage to the battery. The method of thickness optimization in Optistruct was applied to optimize the upper cover, and the optimized battery pack was modelled and simulated again. After optimization, the first-order constrained mode reached 28.4Hz, which effectively avoided the resonance frequency from the road surface. The research results can provide a basis for the structural design of the battery pack.

参考文献/References:

[1] 张书桥. 新能源电动汽车发展历程、现状以及制造技术[J]. 金属加工(冷加工), 2020(4): 8-13.[2] AO KZ, NIIYAMA J, MATSUI T, et al. Analysis of torsional stiffness share rate of truck frame[J]. Technical Papers, 1991(10): 18-21.[3] KRAWCZUK M, OSTACHOWICZ W, CARTMELL J, et al. Modal analysis of the low-pressure frame of steam turbine[J]. American Society of Mechanical Engineers, 1995(2): 275-287.[4] LEE Y. A study on the battery case injection molding by CAE analysis[J]. Journal of the Korea Academia-Industrial Cooperation Society, 2011, 12(1): 55-61.[5] LI Y, WANG L, LIAO C, et al. Recursive modeling and online identification of lithium-ion batteries for electric vehicle applications[J]. Science China Technological Sciences, 2014, 57(2): 403-413.[6] LI X, FAGHRI A. Optimization of the cathode structure of lithium-air batteries based on a two-dimensional, transient, non-isothermal model[J]. Journal of the Electrochemical Society, 2012, 159(10): A1747-A1754.[7] HU R, LIU H, ZENG M, et al. Progress on Sn-based thin-film anode materials for lithium-ion batteries[J]. Chinese Science Bulletin, 2012, 57(32): 4119-4130.[8] XIE J, GE Z, ZANG M, et al. Structural optimization of lithium-ion battery pack with forced air cooling system[J]. Applied Thermal Engineering, 2017, 126: 583-593.[9] 兰凤崇, 刘金, 陈吉清, 等. 电动汽车电池包箱体及内部结构碰撞变形与响应分析[J]. 华南理工大学学报(自然科学版), 2017, 45(2): 1-8.[10] 王震坡, 王越. 纯电动客车侧碰撞有限元建模及仿真分析[J]. 北京理工大学学报, 2013, 33(3): 266-270.[11] 崔佳. 电动客车侧向被动安全仿真与结构优化研究[D]. 北京: 北京理工大学, 2015.[12] 桑林, 叶健诚, 董晨. 电动汽车动力电池箱模态分析和试验研究[J]. 制造业自动化, 2013, 35(22): 77-79.[13] 程文文. 基于精密铸造技术的电动汽车电池包结构轻量化研究[D]. 合肥: 合肥工业大学, 2019.[14] 王芳, 夏军. 电动汽车动力电池系统安全分析与设计[M]. 北京: 科学出版社, 2016.[15] 李明秋. 电池包箱体的有限元分析和结构优化设计[D]. 长春: 吉林大学, 2017.

更新日期/Last Update: 2021-02-25