[1]刘文志.超大尺寸超精密数控磨床构型分析[J].福建工程学院学报,2020,18(04):387-392.[doi:10.3969/j.issn.1672-4348.2020.04.015]
 LIU Wenzhi.Configuration analysis of super-size ultra-precision CNC grinding machines[J].Journal of FuJian University of Technology,2020,18(04):387-392.[doi:10.3969/j.issn.1672-4348.2020.04.015]
点击复制

超大尺寸超精密数控磨床构型分析()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第18卷
期数:
2020年04期
页码:
387-392
栏目:
出版日期:
2020-08-25

文章信息/Info

Title:
Configuration analysis of super-size ultra-precision CNC grinding machines
作者:
刘文志
机械科学研究总院海西(福建)分院有限公司
Author(s):
LIU Wenzhi
Haixi(Fujian) Institute, China Academy of Machinery Science & Technology Co., Ltd.
关键词:
超精密数控磨床多体系统理论误差建模构型分析
Keywords:
ultra-precision CNC grinding machines multi-body system theory error modeling configuration analysis
分类号:
TG584
DOI:
10.3969/j.issn.1672-4348.2020.04.015
文献标志码:
A
摘要:
为确定用于超大口径(>=1500mm)光学非球面成形加工的超精密数控磨床的构型设计方案,本文开展了2种不同构型龙门机床的空间运动误差建模及比较研究。基于多体系统理论,通过建立2种构型龙门机床的拓扑结构图,推导二者的空间运动误差模型;并基于该模型,采用仿真手段比较了二者用于超大尺寸光学非球面加工过程的砂轮中心点误差变化规律;仿真结果表明,在加工大口径非球面元件时,工作台移动式的机床构型具有相对较小的空间运动误差,但两种构型龙门机床的误差十分接近。在综合考虑二者在大口径非球面元件加工过程中的其他特点后,确定了该超精密磨削机床构型为工作台固定的桥式龙门结构。
Abstract:
In order to determine the configuration design scheme of the ultra-precision CNC grinding machine tool for forming and processing super-large diameter (≥1 500 mm) optical aspheric surfaces, modeling and comparison of the spatial motion errors of two different configuration options for the gantry machine tools were carried out. Firstly, based on the theory of multi-body system, space motion error models of the two kinds of gantry machine tools were derived by establishing the topology diagrams of the two configurations. Based on the model, simulation was used to compare the error variation curves of the grinding wheel centers of the two kinds of machine tools during the machining process of super-size optical aspheric surfaces. Simulation results show that when machining large-diameter aspheric parts, the machine tool with a movable table has a relatively small space motion error, but the errors of two kinds of gantry machine tools are very close. After considering the other characteristics of the two in the processing of large-diameter aspheric parts, the configuration of the ultra-precision grinding machine tool is determined to be a bridge gantry structure with a fixed worktable.

参考文献/References:

[1] 魏立峰. 光学零件超精密铣削加工表面形貌预测与仿真[D]. 武汉: 华中科技大学, 2008.[2] 梁迎春, 陈国达, 孙雅洲, 等. 超精密机床研究现状与展望[J]. 哈尔滨工业大学学报, 2014(5): 35-46.[3] 王振忠. 大口径楔形非球面超精密加工装备及关键技术研究[D]. 厦门: 厦门大学, 2009.[4] 唐宇航, 范晋伟, 陈东菊, 等. 基于蒙特卡洛模拟的机床关键几何误差溯源方法[J]. 北京工业大学学报, 2017(11): 16-25.[5] 王晓峰. 复合数控机床几何误差补偿及误差影响溯源分析[D]. 北京: 北京工业大学, 2014.[6] 范晋伟. 基于多体系统运动学的数控机床运动建模及软件误差补偿技术的研究[D]. 天津: 天津大学, 1996.

更新日期/Last Update: 2020-08-25