[1]周宏伟、秦礼友、叶世集、林上顺.下伏土洞加筋地基条形荷载下应力扩散计算[J].福建工程学院学报,2019,17(06):524-531.[doi:10.3969/j.issn.1672-4348.2019.06.003]
 ZHOU Hongwei,QIN Liyou,YE Shiji,et al.Calculation of stress distribution of reinforced foundation in underlying soil caves under strip load[J].Journal of FuJian University of Technology,2019,17(06):524-531.[doi:10.3969/j.issn.1672-4348.2019.06.003]
点击复制

下伏土洞加筋地基条形荷载下应力扩散计算()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第17卷
期数:
2019年06期
页码:
524-531
栏目:
出版日期:
2019-12-25

文章信息/Info

Title:
Calculation of stress distribution of reinforced foundation in underlying soil caves under strip load
作者:
周宏伟、秦礼友、叶世集、林上顺
中铁二局第三工程有限公司
Author(s):
ZHOU Hongwei QIN Liyou YE Shiji LIN Shangshun
3th Engineering Co., Ltd. of China Railway No. 2 Engineering Group
关键词:
应力扩散土洞条形荷载土拱
Keywords:
stress distribution soil cave strip load arching soil
分类号:
TU431
DOI:
10.3969/j.issn.1672-4348.2019.06.003
文献标志码:
A
摘要:
通过大变形有限元分析,对下伏土洞加筋地基条形荷载下应力扩散的作用机理和沉降进行研究,分析了条形基础置于土体上的土体附加应力扩散、土洞区内应力及沉降变化规律。结果表明,土洞区内出现应力集中,下伏土洞地基沉降主要是由于土洞区内软弱土体变形造成。加筋体会增强应力扩散从而减小沉降,加筋体长度和埋深均存在最佳值;多层加筋较单层加筋更利于应力扩散,且层间会出现未完全拱形应力集中区域;相同加筋范围,层数增大对应力扩散影响较小,增大加筋范围更有助于应力扩散。
Abstract:
Through finite element analysis of large deformation, the mechanism and settlement of stress distribution of the reinforced foundation in underlying soil caves under the strip load were studied; the additional stress diffusion of soil body, and the variation of stress and settlement in the soil cave were analyzed. Results show that stress concentration occurs in the soil cave, and the settlement of the underlying soil cave foundation is mainly caused by the deformation of the weak soil in the soil cave area. The reinforcement will enhance the stress diffusion and reduce the settlement, with optimum values for both reinforcement length and depth. Multi-layer reinforcement is more conducive to stress diffusion than single-layer reinforcement, and there is an area of incomplete arch stress concentration between the layers. In the same reinforced range, the increase in the number of layers has little influence on the stress diffusion, and the increase of the reinforced range is more conducive to stress diffusion.

参考文献/References:

[1] LEE J, JEONG S, KO J. Undrained stability of surface strip footings above voids[J]. Computers and Geotechnics, 2014, 62: 128-135.[2] 李毅军. 高速公路岩溶地基稳定性分析及工程处理[D]. 长沙: 中南大学, 2013.[3] CICEK E, GULER E, YETIMOGLU T. Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil[J]. Soils and Foundations, 2015, 55(4): 661-677.[4] HUCKERT A, BRIANCON L, VILLARD P, et al. Load transfer mechanisms in geotextile-reinforced embankments overlying voids: experimental and analytical approaches[J]. Geotextiles and Geomembranes, 2016, 44(3): 442-456.[5] 贺炜, 李昆, 王芳洪. 防岩溶塌陷加筋垫层大比例模型试验及设计理论研究[J]. 岩石力学与工程学报, 2016, 35(5): 980-988.[6] ALEKSANDROV A, KALININ A, TSYGULEVA M. Distribution capacity of sandy soils reinforced with geosynthetics[J]. Magazine of Civil Engineering, 2016, 66(6): 35-48.[7] BENMEBAREK S, BERRABAH F, BENMEBAREK N. Effect of geosynthetic reinforced embankment on locally weak zones by numerical approach[J]. Computers and Geotechnics, 2015, 65: 115-125.[8] VILLARD P, HUCKERT A, BRIANCON L. Load transfer mechanisms in geotextile-reinforced embankments overlying voids: numerical approach and design[J]. Geotextiles and Geomembranes, 2016, 44(3): 381-395.[9] CICEK E, GULER E, YETIMOGLU T. Stress distribution below a continuous footing on geotextile-reinforced soil[J]. International Journal of Geomechanics, 2018, 18(3): 06018005.[10] 侯娟, 张孟喜, 张陶陶,等. 横-竖立体加筋地基中附加应力的分析计算[J]. 岩土力学, 2015, 36(S2): 702-708.[11] GIBSON R E. Some results concerning displacements and stresses in a Non-Homogeneous elastic Half-space[J]. Géotechnique, 1967, 17(1): 58-67.[12] 张克恭, 刘松玉. 土力学[M]. 北京: 中国建筑工业出版社, 2010.

更新日期/Last Update: 2019-12-25