[1]邱金友,盛健,吴志鸿.含油制冷剂R600a管内两相流动摩擦压降研究[J].福建工程学院学报,2019,17(01):17-22.[doi:10.3969/j.issn.1672-4348.2019.01.004]
 QIU Jinyou,SHENG Jian,WU Zhihong.A study on two-phase frictional pressure drop for R600a/oil mixture in tube[J].Journal of FuJian University of Technology,2019,17(01):17-22.[doi:10.3969/j.issn.1672-4348.2019.01.004]
点击复制

含油制冷剂R600a管内两相流动摩擦压降研究()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第17卷
期数:
2019年01期
页码:
17-22
栏目:
出版日期:
2019-02-25

文章信息/Info

Title:
A study on two-phase frictional pressure drop for R600a/oil mixture in tube
作者:
邱金友盛健吴志鸿
福建工程学院 建筑新能源与节能福建省高校重点实验室
Author(s):
QIU Jinyou SHENG Jian WU Zhihong
Fujian Provincial Key Laboratory of New Energy and Energy-saving for Building
关键词:
R600a/油混合物两相流动摩擦压降关联式
Keywords:
R600a/oil mixture two-phase flow frictional pressure drop correlation model
分类号:
TH12
DOI:
10.3969/j.issn.1672-4348.2019.01.004
文献标志码:
A
摘要:
基于文献含油制冷剂R600a两相流动摩擦压降实验数据,采用文献中6种关联式模型对含油制冷剂R600a两相摩擦压降的实验数据进行预测判断。结果表明:油影响因子模型Schlager关联式和Eckel关联式的预测值与实验值平均绝对偏差分别为27.3%和24.4%;混合物性的两相增强因子模型Zurcher关联式和Hu关联式的预测值与实验值的平均绝对偏差分别为33.8%和34.0%,上述关联式预测值普遍低于实验值。
Abstract:
Based on the experimental data of the two-phase flow frictional pressure drop of R600a and oil mixture,six correlation models mentioned in the literature were used to make predictions about the experimental data of the two-phase frictional pressure drop of R600a and oil mixture. Results show that as for the factor model of the oil’s impact, the average absolute deviation between the predicted value and the experimental value of the Schlager correlation model and that of the Eckel correlation model are 27.3% and 24.4% respectively. As for the two-phase enhancement factor model of the mixture’s properties, the average absolute deviation between the predicted value and the experimental value of the Zurcher correlation model and that of the Hu correlation model are 33.8% and 34.0% respectively. The above predictive values made with the correlation models are generally lower than the experimental data.

参考文献/References:

[1] MOTA-BABILONI A, NAVARRO-ESBR J, NGELBARRAGN, et al. Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements[J]. Applied Thermal Engineering, 2014, 71(1): 259-265.[2] MCLINDEN M O, KAZAKOV A F, BROWN J S, et al. A thermodynamic analysis of refrigerants: Possibilities and tradeoffs for Low-GWP refrigerants[J]. International Journal of Refrigeration, 2014, 38(1):80-92.[3] MOHANRAJ M, MURALEEDHARAN C, JAYARAJ S. A review on recent developments in new refrigerant mixtures for vapour compression-based refrigeration, air-conditioning and heat pump units[J]. International Journal of Energy Research, 2011, 35(8):647-669.[4] PRAPAINOP R, SUEN K O. Effects of refrigerant properties on refrigerant performance comparison: a review[J]. International Journal of Engineering Research and Applications, 2012,2(4): 486-493.[5] KUMAR K S, RAJAGOPAL K. Computational and experimental investigation of low ODP and low GWP HCFC-123 and HC-290 refrigerant mixture alternate to CFC-12[J]. Energy Conversion & Management, 2007, 48(12): 3053-3062.[6] 李敏霞, 陈雪龙, 李颖玲, 等. 润滑油对2种水平管降膜蒸发传热特性的影响[J]. 化学工程, 2017, 45(7): 32-37.[7] 王学东, 柳建华, 宋吉, 等. 油浓度对小管径水平内螺纹管内R404A冷凝换热影响的实验研究[J]. 热能动力工程, 2017, 32(10): 29-33.[8] 〖JP2〗SHEN B, GROLL E. Review article: acritical review of the influence of lubricants on the heat iransfer and pressure drop of refrigerants part II: lubricant influence on condensation and pressure drop[J]. Hvac & R Research, 2005, 11(4): 511-526.〖JP〗[9] CHO K, TAE S J. Evaporation heat transfer for R-22 and R-407C refrigerant-oil mixture in a microfin tube with a U-bend[J]. International Journal of Refrigeration, 2000, 23: 219-231.[10] CHEN I Y, WU Y S, CHANG Y J, et al. Two-phase frictional pressure drop of R-134a and R-410A refrigerant-oil mixtures in straight tubes and U-type wavy tubes[J]. Experimental Thermal & Fluid Science, 2007, 31(4): 291-299.[11] HU H T, DING G L, WEIK J, et al. Measurement and correlation of frictional pressure drop of R-410A/Oil mixture flow boiling in a 7 mm straight smooth tube[J]. Hvac & R Research, 2008, 14(5): 763-781.[12] FILHO E P B, CHENG L, THOME J R. Flow boiling characteristics and flow pattern visualization of refrigerant/lubricant oil mixtures[J]. International Journal of Refrigeration, 2009, 32(2): 185-202.[13] DANG C, HARAGUCHI N, YAMADA T, et al. Effect of lubricating oil on flow boiling heat transfer of carbon dioxide[J]. International Journal of Refrigeration, 2013, 36(1): 136-144.[14] 李炅, 张秀平, 贾磊,等. 润滑油对R32在水平光管内流动沸腾换热特性及压降的影响[J]. 流体机械, 2016, 44(3): 65-69.[15] 胡海涛, 朱禹,彭浩, 等. 泡沫金属管内含油制冷剂流动沸腾的压降特性[J]. 化工学报, 2014, 65(S2): 95-100.[16] 〖JP2〗杨志强, 公茂琼, 陈高飞, 等. R600a水平管内两相流型转换及摩擦压降特性[J]. 科学通报, 2018, 63(1): 98-107.[17] MOMENIFAR M R, AKHAVAN-BEHABADI M A, NASR M, et al. Effect of lubricating oil on flow boiling characteristics of R-600a/oil inside a horizontal smooth tube[J]. Applied Thermal Engineering, 2015, 91: 62-72.[18] SCHLAGER L M, PATE M B, BERGLES A E. Performance predictions of refrigerant-oil mixtures in smooth and internally finned tubes-Part II: Design equations[J]. Ashrae Transactions, 1990, 96(1): 170-182.[19] ECKELS S J, DOERR T M, PATE M B. In-tube heat transfer and pressure drop of R-134a and ester lubricant mixtures in a smooth tube and a micro-fin tube. Part I-Evaporation[J]. ASHRAE Transactions, 1994, 100(2): 265-282.[20] TICHY JA, DUQUE-RIVERA J, MACKEN N A, et al. An experimental investigation of pressure drop in forced-convection condensation and evaporation of oil-refrigerant mixtures[J]. J Urology, 1986, 191: 355.[21] ZURCHER O, THOME J R, FAVRAT D, et al. Flowboiling and pressure drop measurements for R-134a/Oil mixtures part 2: evaporation in a plain tube[J]. Hvac & R Research, 1997, 3(1): 54-64.[22] WEI W J, DING G L, WANG K J. Measurement and correlation of two-phase frictional performance of refrigerant-oil mixtures inside small tubes[J]. Hvac & R Research, 2007, 13(2): 397-411.[23] 胡海涛, 丁国良, 汪振策,等. R410A-油在7mm水平直光管内流动沸腾阻力特性[J]. 上海交通大学学报, 2007, 41(3): 370-375.

更新日期/Last Update: 2019-02-25