[1]欧阳恒.福州市闽江水源热泵技术应用基础数据库建设[J].福建工程学院学报,2018,16(01):17-21.[doi:10.3969/j.issn.1672-4348.2018.01.004]
 OUYANG Heng.Construction of the basic database for the application of Minjiang River water source heat pump technology in Fuzhou[J].Journal of FuJian University of Technology,2018,16(01):17-21.[doi:10.3969/j.issn.1672-4348.2018.01.004]
点击复制

福州市闽江水源热泵技术应用基础数据库建设()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第16卷
期数:
2018年01期
页码:
17-21
栏目:
出版日期:
2018-02-25

文章信息/Info

Title:
Construction of the basic database for the application of Minjiang River water source heat pump technology in Fuzhou
作者:
欧阳恒
福建工程学院土木工程学院
Author(s):
OUYANG Heng
School of Civil Engineering, Fujian University of Technology
关键词:
水源热泵系统 闽江 水温 水质 水位
Keywords:
water source heat pump system Minjiang River water temperature water quality water level
分类号:
TU83
DOI:
10.3969/j.issn.1672-4348.2018.01.004
文献标志码:
A
摘要:
对福州市境内闽江水的水温、水质和水位等重要参数开展测试工作,建立了福州市闽江水源热泵技术应用基础数据库。测试数据显示闽江水温在纵向断面上基本保持一致,相对气温变化稳定,适合作为冷热源。多项水质测试结果显示,主要水质指标均满足水源热泵机组的要求,闽江水存在浊度大和铁离子含量偏高的问题。闽江水位每日变化幅度受潮汐的影响较大,潮差自闽江口向闽江上游逐渐减少,其中马尾段每日最大水位差在2.58~5.34 m之间波动,水位年变化幅度为5.51 m。本研究旨在为福州市闽江水源热泵技术推广应用提供数据支撑。
Abstract:
The important parameters such as water temperature, water quality and water level of Minjiang River in Fuzhou were tested, and the basic database was established for the application of Minjiang River water source heat pump (WSHP) technology in Fuzhou. The test data show that the Minjiang River is suitable for the cold and heat sources of WSHP as the water flow is basically isothermal on the longitudinal section distribution and its temperature changes are relatively stable. Results from a number of water quality tests reveal that its main indexes can meet the requirements of the WSHP system, but the problems lie in the high turbidity and high iron ion concentration. The daily variation range of the Minjiang River water level is greatly affected by the tide, and the tidal range gradually decreases from the Minjiang River estuary to its upper reaches. The maximum daily water level difference in the Mawei section fluctuates between 2.58 and 5.34 m, and the annual variation of the water level is 5.51 m. The objective of this study is to provide data support for the extensive application of WSHP in Minjiang River in Fuzhou.

参考文献/References:

[1] 杨露露,卢军,白雪莲,等.重庆地区江水源热泵取水水源的时序分析[J].中国给水排水,2014,30(23):123-126.
[2] 柴峰,白雪莲.江水源热泵的水源条件分析[J].暖通空调,2013,43(7):44-47.
[3] 李百战,贾遵锋,丁勇,等.重庆市江水源热泵技术应用基础数据库建设[J].暖通空调,201141(1):95-98.
[4] 戴志忠.福州地区水文特征分析[J].水利科技,2004(3):9-11.
[5] 国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:34-41.
[6] 中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005.
[7] 徐伟,刘志坚.中国地源热泵技术发展与展望[J].建筑科学,2013,29(10):26-33.
[8] KINDAICHI Sayaka, NISHINA Daisaku, WEN Liwei et al. Potential for using water reservoirs as heat sources in heat pump systems[J]. Applied Thermal Engineering. 2015(76):47-53.
[9] SI Pengfei, LI Angui, RONG Xiangyang X et al. New optimized model for water temperature calculation of river-water source heat pump and its application in simulation of energy consumption[J]. Renewable Energy.2015(84):65-73.
[10] 中国建筑科学研究院.民用建筑供暖通风与空气调节设计规范:GB50736-2012[S]北京:中国建筑工业出版社,2012.
[11] 洪小筠.闽江下游感潮河段水污染特性分析[J].水利科技,2010(3):4-5.
[12] 中国建筑科学研究院.地源热泵系统工程技术规范:GB 50366-2005[S].北京:中国建筑工业出版社,2009.
[13] 中华人民共和国建设部.采暖通风与空气调节设计规范:GB50019-2003[S].北京: 中国计划出版社,2003.
[14] 王子云,付祥钊,仝庆贵.利用长江水作热泵系统冷热源的技术分析[J].中国给水排水,2007,23(6):6-9.

更新日期/Last Update: 2018-02-25