[1]杜峰,向志豪.计及消纳风光的电动汽车充放电多目标优化调度[J].福建理工大学学报,2025,23(04):354-360.[doi:10.3969/j.issn.2097-3853.2025.04.007]
 DU Feng,XIANG Zhihao.Multi-objective optimization scheduling of electric vehicle charging and discharging considering accommodation of wind and solar energy[J].Journal of Fujian University of Technology;,2025,23(04):354-360.[doi:10.3969/j.issn.2097-3853.2025.04.007]
点击复制

计及消纳风光的电动汽车充放电多目标优化调度()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年04期
页码:
354-360
栏目:
出版日期:
2025-08-25

文章信息/Info

Title:
Multi-objective optimization scheduling of electric vehicle charging and discharging considering accommodation of wind and solar energy
作者:
杜峰向志豪
福建理工大学建筑与城乡规划学院
Author(s):
DU Feng XIANG Zhihao
School of Architecture and Urban Planning, Fujian University of Technology
关键词:
多目标优化调度风光消纳动态分时电价小生境技术电动汽车
Keywords:
multi-objective optimization scheduling wind and solar energy accommodation dynamic time-of-use electricity pricing niching technology electric vehicle
分类号:
TM73
DOI:
10.3969/j.issn.2097-3853.2025.04.007
文献标志码:
A
摘要:
针对电动汽车无序入网的问题,提出了电动汽车充放电调度与风光消纳的方法。建立了电动汽车的有序和无序充电模型;在动态分时电价机制的引导下,以最低微网等效负荷峰谷差均方值、最低电动汽车运行成本作为目标函数,建立了一个计及风光消纳的电动汽车充放电的多目标调度模型。用基于小生境的多目标粒子群算法来对模型进行求解,通过算例分析得出,该模型不仅可以降低电动汽车充放电成本、降低负荷峰谷差,还可以有效增加风光消纳。
Abstract:
A study was conducted addressing the issue of disordered access of electric vehicles into the power grid, proposing a method for the scheduling of electric vehicle charging and discharging in conjunction with the accommodation of wind and solar energy. Models for orderly and disorderly charging of electric vehicles were established. Under the guidance of a dynamic time-of-use electricity pricing mechanism, with the objectives of minimizing the peak-to-valley difference of the microgrid’s equivalent load and minimizing the operational cost of electric vehicles, a multi-objective scheduling model for electric vehicle charging and discharging considering the consumption of wind and solar energy was established. A multi-objective particle swarm algorithm based on niches was used to solve the model. Through case analysis, it was concluded that the model can not only reduce the cost of electric vehicle charging and discharging and decrease the load peak-to-valley difference, but also effectively increase the consumption of wind and solar energy.

参考文献/References:

[1] 朱传奇. 规模化电动汽车充电负荷影响及其V2G行为优化策略研究[D]. 淮南:安徽理工大学,2022.[2] 李怡然,张姝,肖先勇,等. V2G模式下计及供需两侧需求的电动汽车充放电调度策略[J]. 电力自动化设备,2021,41(3):129-135,143.[3] 周玮,蓝嘉豪,麦瑞坤,等. 无线充电电动汽车V2G模式下光储直流微电网能量管理策略[J]. 电工技术学报,2022,37(1):82-91.[4] 吴宇,张彼德,袁国森,等. 计及电动汽车和风光资源不确定性的微电网优化配置[J]. 电测与仪表,2016,53(16):39-44.[5] 张程,匡宇,邹复民,等. 考虑风光不确定性与电动汽车的综合能源系统低碳经济调度[J]. 电力自动化设备,2022,42(10):236-244.[6] 葛少云,郭建祎,刘洪,等. 计及需求侧响应及区域风光出力的电动汽车有序充电对电网负荷曲线的影响[J]. 电网技术,2014,38(7):1806-1811.[7] 张娜,唐忠. 考虑V2G下电动汽车与风电协同调度的多目标优化策略[J]. 电测与仪表,2018,55(12):54-59,87. [8] 王召月,袁绍欣. 基于概率分布估计的私家车和出租车行程时间可变性度量[J]. 计算机应用与软件,2019,36(12):232-238,255.[9] 曹卫涛. 电动汽车充电负荷预测方法及应用研究[D]. 南京:南京邮电大学,2020. [10] 李含玉, 杜兆斌, 陈丽丹, 等. 基于出行模拟的电动汽车充电负荷预测模型及V2G评估[J]. 电力系统自动化, 2019, 43(21): 88-96.[11] ZHENG W D, LI Y X, ZHANG M, et al. Reli ability evaluation and analysis for NEV charging station considering the impact of charging experience[J]. International Journal of Hydrogen Energy, 2022, 47 (6): 3980-3993.[12] CLEMENT-NYNS K, HAESEN E, DRIESEN J. The impact of charging plug-in hybrid electric vehicles on a resi- dential distribution grid[J]. IEEE Transactions on Power Systems, 2010, 25(1): 371-380.[13] 郭月新. 考虑环境温度下电动汽车中长期负荷预测及充电负荷优化研究[D]. 南昌:南昌大学,2021. [14] ZHANG J P,WANG Y,LI J X,et al. Day-ahead operation of EV charging station in a logistics center considering charging behaviors of different types of EVs[C]∥ IEEE 11th Annual International Conference on CYBER Technology in Automation,Control,and Intelligent Systems (CYBER). Jiaxing,China: IEEE,2021:626-631. [15] 罗毅,张岩. 基于预测变异多目标粒子群算法的风-光-抽水蓄能系统日前调度[J]. 可再生能源,2023,41(11):1484-1490. [16] 邹玙琦,杨国华,郑豪丰,等. 基于改进小生境PSO算法的综合能源系统调度[J]. 电力系统及其自动化学报,2020,32(7):47-52,60.[17] 周荣昱. 基于小生境多目标粒子群优化算法的配电网混合储能配置研究[J]. 电气开关,2021,59(6):35-41.

更新日期/Last Update: 2025-08-25