[1]杜峰,郑森财.基于改进黏菌算法的遮阴条件下光伏MPPT控制研究[J].福建理工大学学报,2025,23(01):95-102.[doi:10.3969/j.issn.2097-3853.2025.01.010]
 DU Feng,ZHENG Sencai.Study of PV MPPT control under shading conditions based on improved slime mould algorithm[J].Journal of Fujian University of Technology;,2025,23(01):95-102.[doi:10.3969/j.issn.2097-3853.2025.01.010]
点击复制

基于改进黏菌算法的遮阴条件下光伏MPPT控制研究
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年01期
页码:
95-102
栏目:
出版日期:
2025-02-26

文章信息/Info

Title:
Study of PV MPPT control under shading conditions based on improved slime mould algorithm
作者:
杜峰郑森财
福建理工大学建筑与城乡规划学院
Author(s):
DU Feng ZHENG Sencai
School of Architecture and Urban Rural Planning, Fujian University of Technology
关键词:
光伏阵列最大功率点跟踪局部遮阴改进黏菌算法
Keywords:
photovoltaic array maximum power point tracking partial shading improved slime mould algorithm
分类号:
TM615
DOI:
10.3969/j.issn.2097-3853.2025.01.010
文献标志码:
A
摘要:
为了更好处理遮阴条件下光伏阵列的多峰P?U 特性曲线,提出一种基于改进黏菌算法的MPPT控制方法。首先引入混沌映射函数初始化黏菌个体,增加种群的多样性;其次,在黏菌算法中引入螺旋搜索策略,提高算法全局搜索能力;最后引入动态透镜对立学习策略,提高寻优精度和对局部最优解的逃逸能力。仿真结果表明,所提算法相较于PSO 和SMA 算法,在跟踪速度、收敛精度等方面有更显著的效果,能够有效提高光伏系统的发电效率。
Abstract:
In order to better handle the multi-peak P-U characteristic curves of PV arrays under shading conditions, an MPPT control method based on the improved slime mould algorithm is proposed. Firstly, a chaotic mapping function is introduced to initialize the individual slime moulds to increase the diversity of the population; secondly, a spiral search strategy is introduced into the slime mould algorithm to improve the global search capability of the algorithm; and finally, a dynamic lenticular opposition learning strategy is introduced to improve the accuracy of the optimization search and the ability of escaping the local optimal solution. Simulation results show that the proposed algorithm has more significant effects in tracking speed and convergence accuracy compared with PSO and SMA algorithms, and can effectively improve the power generation efficiency of PV system.

参考文献/References:

[1] 杨博,钟林恩,朱德娜,等. 部分遮蔽下改进樽海鞘群算法的光伏系统最大功率跟踪[J]. 控制理论与应用,2019,36(3):339-352.[2] ALI Z M,VU QUYNH N,DADFAR S,et al. Variable step size perturb and observe MPPT controller by applying θ-modified krill herd algorithm-sliding mode controller under partially shaded conditions[J]. Journal of Cleaner Production,2020,271:122243.[3] 花赟昊,朱武,靳一奇,等. 基于自适应变异粒子群算法的光伏MPPT控制研究[J]. 太阳能学报,2022,43(4):219-225.[4] BAATIAH A O,ELTAMALY A M,ALOTAIBI M A. Improving photovoltaic MPPT performance through PSO dynamic swarm size reduction[J]. Energies,2023,16(18):6433.[5] 付文龙,孟嘉鑫,张赟宁,等. 复杂遮荫下基于改进GWO的光伏多峰MPPT控制[J]. 太阳能学报,2023,44(3):435-442.[6] 张明锐,陈喆旸,韦莉. 免疫萤火虫算法在光伏阵列最大功率点跟踪中的应用[J]. 电工技术学报,2020,35(7):1553-1562.[7] 商立群,李帆. 基于自适应布谷鸟搜索和扰动观察法的光伏最大功率点跟踪[J]. 电力系统保护与控制,2022,50(8):99-107.[8] 朱福宝,付文龙,张海荣,等. 局部遮荫下基于改进金枪鱼算法的光伏最大功率点跟踪控制[J]. 热力发电,2024,53(6):30-38.[9] XIAO Y P,ZHAO Y F,SHEN Z T,et al. SMGSA algorithm-based MPPT control strategy[J]. Journal of Power Electronics,2024,24(5):789-798.[10] 李红岩,王磊,刘宝,等. 基于改进蝴蝶优化算法的光伏MPPT方法[J]. 计算机仿真,2023,40(12):108-112.[11] 贠武超. 基于鲸鱼粒子群融合算法的MPPT研究[J]. 电源技术,2023,47(10):1351-1354.[12] 刘晓宇,朱杰,郭浩,等.光照突变下基于改进花朵授粉算法的光伏阵列MPPT控制[J/OL].武汉大学学报(工学版),1-9[2025-02-25].http:∥kns.cnki.net/kcms/detail/42.1675.T.20240403.1324.002.html.[13] 李畸勇,张伟斌,赵新哲,等. 改进鲸鱼算法优化支持向量回归的光伏最大功率点跟踪[J]. 电工技术学报,2021,36(9):1771-1781.[14] 任志玲,毛奕栋. 基于改进黏菌算法的光伏多峰值MPPT控制[J]. 太阳能学报,2024,45(2):421-428.[15] RIZK-ALLAH R M,HASSANIEN A E,SLOWIK A. Multi-objective orthogonal opposition-based crow search algorithm for large-scale multi-objective optimization[J]. Neural Computing and Applications,2020,32(17):13715-13746..[16] 李得恺,张长胜,杨雪松. 融合多策略改进的黏菌优化算法[J]. 模式识别与人工智能,2023,36(7):647-660.

更新日期/Last Update: 2025-02-25