[1]陈子标,章忌,方卫东.基于改进型区间电池容量计算与GRU结合的SOH预测[J].福建理工大学学报,2025,23(01):86-94.[doi:10.3969/j.issn.2097-3853.2025.01.009]
 CHEN Zibiao,ZHANG Ji,FANG Weidong.SOH prediction based on improved interval battery capacity calculation combined with GRU[J].Journal of Fujian University of Technology;,2025,23(01):86-94.[doi:10.3969/j.issn.2097-3853.2025.01.009]
点击复制

基于改进型区间电池容量计算与GRU结合的SOH预测
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年01期
页码:
86-94
栏目:
出版日期:
2025-02-26

文章信息/Info

Title:
SOH prediction based on improved interval battery capacity calculation combined with GRU
作者:
陈子标章忌方卫东
福建理工大学电子电气与物理学院
Author(s):
CHEN Zibiao ZHANG Ji FANG Weidong
School of Electronic, Electrical Engineering and Physics, Fujian University of Technology
关键词:
锂离子电池电动汽车门循环单元边缘计算电池健康度
Keywords:
lithium-ion batteries electric vehicles gated recurrent unit (GRU) edge computing battery health
分类号:
TM912.9
DOI:
10.3969/j.issn.2097-3853.2025.01.009
文献标志码:
A
摘要:
电动汽车的电池健康状态( state of health,SOH) 监测系统对电池的回收和再利用具有重要意义。为了提高电动汽车电池的回收利用率、确保电池性能的最大化和安全性,提出了一种改进的电池容量计算区间及相关特征提取方法。通过密度聚类、Z?score( 标准分数) 和高斯滤波方法,对电池SOH 数据去噪和规范化处理。采用门控循环单元(gated recurrent unit,GRU) 模型进行训练和测试。实验结果表明,SOH 预测的均方根误差在3.5%以内,平均值误差在2.5%以内。该模型由于神经元个数较少,预测速度较快,对边缘部署有一定的参考价值。
Abstract:
The battery state of health (SOH) monitoring system of electric vehicles is important for the recovery and reuse of batteries. In order to improve the recycling rate of electric vehicle batteries and ensure the maximization of battery performance and safety, an improved battery capacity calculation interval and related feature extraction method are proposed. The battery SOH data are denoised and normalized by density clustering, Z-score (standard score) and Gaussian filtering methods. The gated recurrent unit (GRU) model is used for training and testing. Experimental results show that the root mean square error of SOH prediction is within 3.5% and the mean error is within 2.5%. This model is a good reference for edge deployment due to the smaller number of neurons and faster prediction speed.

参考文献/References:

[1] LIU C, WANG Y J, CHEN Z H. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]. Energy, 2019,166:796-806.[2] 陈琳,陈静,王惠民,等. 基于小波包能量熵的电池剩余寿命预测[J]. 电工技术学报,2020,35(8):1827-1835.[3] 郑永飞,文怀兴,韩昉,等. 基于电池外特征的粒子群神经网络电池健康状态预测[J]. 科学技术与工程,2019,19(36): 184-189.[4] 郭邦军,李家琦,马小乐,等. 基于深度学习的动力锂离子电池容量估计[J].电池,2022,52(5):517-521.[5] 张浩,胡昌华,杜党波,等. 多状态影响下基于Bi-LSTM网络的锂电池剩余寿命预测方法[J]. 电子学报,2022,50(3):619-624.[6] 郝可青,吕志刚,邸若海,等. 基于鲸鱼算法优化长短时记忆神经网络的锂电池剩余寿命预测[J]. 科学技术与工程,2022,22(29):12900-12908.[7] 方斯顿,刘龙真,孔赖强,等. 基于双向长短期记忆网络含间接健康指标的锂电池SOH估计[J]. 电力系统自动化, 2024, 48(04):160-168.[8] 李峥,张泽恒,杨斌,等. 混合钳位式感应电能传输系统抗偏移恒流-恒压充电研究[J/OL]. 中国电机工程学报,1-10[2024-05-20]. https:∥doi.org/10.13334/j.0258-8013.pcsee.231898.[9] PRADHAN S K, CHAKRABORTY B. Battery management strategies: an essential review for battery state of health monitoring techniques[J]. Journal of Energy Storage, 2022, 51: 104427[10] TRITHAM C, LEKAWAT L, ARRAYANGKOOL A, et al. A comparison between correlation and grey relational for big data and analytics [C]∥2018 International Electrical Engineering Congress. Krabi: IEEE, 2018, pp. 1-4.

相似文献/References:

[1]左俊中.福州滨海新城核心区充电基础设施规划探索[J].福建理工大学学报,2020,18(03):293.[doi:10.3969/j.issn.1672-4348.2020.03.016]
 ZUO Junzhong.Exploration of charging facility planning in the core area of Fuzhou Binhai New Town[J].Journal of Fujian University of Technology;,2020,18(01):293.[doi:10.3969/j.issn.1672-4348.2020.03.016]
[2]张庆永,陈山友,袁一卿,等.某电动汽车行星变速器振动特性分析与优化[J].福建理工大学学报,2023,21(06):566.[doi:10.3969/j.issn.1672-4348.2023.06.009]
 ZHANG Qingyong,CHEN Shanyou,YUAN Yiqing,et al.Analysis and optimization of vibration characteristics ofplanetary gear transmission for electric vehicles[J].Journal of Fujian University of Technology;,2023,21(01):566.[doi:10.3969/j.issn.1672-4348.2023.06.009]
[3]鄢仁武,梁涔,鲍金晟.基于IGDT含电动汽车接入的能源系统输配协同双层优化调度[J].福建理工大学学报,2024,22(03):250.[doi:10.3969/j.issn.2097-3853.2024.03.007]
 YAN Renwu,LIANG Cen,BAO Jinsheng.Bi-layer optimization scheduling of energy system transmission and distribution based on IGDT with electric vehicle access[J].Journal of Fujian University of Technology;,2024,22(01):250.[doi:10.3969/j.issn.2097-3853.2024.03.007]

更新日期/Last Update: 2025-02-25