[1]柳嘉豪,林文彬,卓祖磊,等.微生物诱导碳酸钙沉淀技术固化海相淤泥试验[J].福建理工大学学报,2025,23(01):33-39.[doi:10.3969/j.issn.2097-3853.2025.01.002]
 LIU Jiahao,LIN Wenbin,ZHUO Zulei,et al.Experimental study on reinforcement of marine silt by microbial induced calcium carbonate precipitation technolog[J].Journal of Fujian University of Technology;,2025,23(01):33-39.[doi:10.3969/j.issn.2097-3853.2025.01.002]
点击复制

微生物诱导碳酸钙沉淀技术固化海相淤泥试验
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年01期
页码:
33-39
栏目:
出版日期:
2025-02-26

文章信息/Info

Title:
Experimental study on reinforcement of marine silt by microbial induced calcium carbonate precipitation technolog
作者:
柳嘉豪林文彬卓祖磊吴杉颖高玉朋张佳源罗承浩
(福建理工大学)福建省土木工程新技术与信息化重点实验室
Author(s):
LIU Jiahao LIN Wenbin ZHUO Zulei WU Shanying GAO Yupeng ZHANG Jiayuan LUO Chenghao
Fujian Provincial Key Laboratory of Advanced Technology and Informatization in Civil Engineering, Fujian University of Technology
关键词:
微生物诱导碳酸钙沉淀 碳酸钙 固化 淤泥 微观机理 无侧限抗压强度
Keywords:
microbial induced calcium carbonate precipitation calcium carbonate reinforcement silt micromechanism unconfined compressive strength
分类号:
TU442
DOI:
10.3969/j.issn.2097-3853.2025.01.002
文献标志码:
A
摘要:
探究了菌液浓度(OD600)、胶结液浓度和龄期等因素对微生物诱导碳酸钙沉淀(MICP)技术固化海相淤泥的物理力学性能的影响,并通过X 射线衍射(XRD)和扫描电镜(SEM)试验,探究加固后试样微观形态特征及其固化机理。结果表明,MICP 固化后,试样的无侧限抗压强度(UCS)、内摩擦角和黏聚力随着菌液浓度的增加而增加,而液塑限逐渐减小。在低菌液浓度条件下,MICP 固化后淤泥试样的UCS、内摩擦角和黏聚力都随着胶结液浓度的增加而增加,而液塑限逐渐减小;在高菌液浓度条件下,随着胶结液浓度的增加,MICP 固化后淤泥试样的UCS、内摩擦角和黏聚力先增加后减小,而液塑限先减小后增加。MICP 固化淤泥的物理力学性能在7 d 内随着龄期的增加而增强,7 d 后基本不再增加。因此,当OD600为4、胶结液浓度为2 mol/ L 时,淤泥固化效果最佳,7 d 后试样UCS 可达104.96 kPa,内摩擦角可达27.2°,黏聚力可达9.4 kPa,同时液塑限也有着一定程度的减小。微观试验结果显示,MICP 产生的六面体形态的方解石将其周围的片状淤泥土颗粒黏结为团聚体,从而起到固化土体的作用。
Abstract:
In this study, the effects of bacterial liquid concentration (OD600), cementing liquid concentration, age and other factors on the physical and mechanical properties of marine silt reinforced by microbial induced calcium carbonate precipitation (MICP) technology were investigated, and the micro-morphological characteristics and the reinforcement mechanism of the consolidated specimens were probed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Test results show that after MICP curing, the unconfined compressive strength (UCS), internal friction angle and cohesion of the specimens increased with the rising of the bacterial liquid concentration, while the liquid-plastic limit gradually decreased. Under the condition of low bacterial solution concentration, the UCS, internal friction angle and cohesion of the reinforced specimens increased with the rising of cement concentration, while the liquid-plastic limit gradually decreased. However, at high bacterial solution concentrations, as cement concentration increased, the UCS, internal friction angle and cohesion of the reinforced specimens initially increased and then decreased, while the liquid-plastic limit firstly decreased and then increased. The physical and mechanical properties of the reinforced specimens enhanced with the increase of curing age within 7 days and then basically no more changes would occur. The optimal solidification effect of silt was achieved with an OD600 of 4 and a bonding fluid concentration of 2 mol/L, resulting in a UCS of 104.96 kPa, an internal friction angle of 27.2°, and a cohesion of 9.4 kPa after 7 days, along with a significant reduction in the liquid limit. The microscopic test results reveal that the hexahedral calcite produced by MICP process can bind the surrounding flaky silt particles into aggregates, thus helping to solidify the soil.

参考文献/References:

[1] 陈萌,杨国录,徐峰,等. 淤泥固化处理研究进展[J]. 南水北调与水利科技,2018,16(5):128-138. [2] 许万强,林文彬,罗承浩,等. MICP技术研究进展及在海洋岩土工程的应用展望[J]. 福建工程学院学报,2022,20(6):511-519. [3] ZHANG X S,WANG H Y,WANG Y,et al. Improved methods,properties,applications and prospects of microbial induced carbonate precipitation (MICP) treated soil:a review[J]. Biogeotechnics,2024:100123. [4] 刘汉龙, 赵常, 肖杨. 微生物矿化反应原理、沉积与破坏机制及理论:研究进展与挑战[J]. 岩土工程学报, 2024, 46(7): 1347-1358.[5] 刘鹏, 曹源兴, 程钰, 等. 碳酸酐酶增强微生物矿化固土效果的试验研究[J]. 岩土力学, 2024(9): 1-11.[6] 林文彬,程晓辉,由爽,等.微生物注浆加固沙漠风积砂试验研究[J/OL]. 工程力学.(2023-10-17)[2024-04-19]. https:∥link.cnki.net/urlid/11.2595.O3.20231016.1147.008 [7] SUN X H,MIAO L C,WU L Y,et al. Improvement of bio-cementation at low temperature based on Bacillus megaterium[J]. Applied Microbiology and Biotechnology,2019,103(17):7191-7202. [8] LIN W B,GAO Y P,LIN W,et al. Seawater-based bio-cementation of natural sea sand via microbially induced carbonate precipitation[J]. Environmental Technology & Innovation,2023,29:103010. [9] DEJONG J T,SOGA K,KAVAZANJIAN E,et al. Biogeochemical processes and geotechnical applications:progress,opportunities and challenges[J]. Géotechnique,2013,63(4):287-301. [10] 邵光辉,尤婷,赵志峰,等. 微生物注浆固化粉土的微观结构与作用机理[J]. 南京林业大学学报(自然科学版),2017,41(2):129-135. [11] 蚁曼冰. MICP技术加固软土的物理力学性能研究[D]. 汕头:汕头大学,2020. [12] 刘建兴. 微生物诱导矿化加固黏性土的试验与机理研究[D]. 杭州:浙江大学,2020. [13] 中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019.[14] 李佳明,陈学军,黄翔,等. 纳米碳酸钙对红黏土的影响及其作用机理分析[J]. 桂林理工大学学报,2020,40(1):109-116.

更新日期/Last Update: 2025-02-25