[1]易思敏,曾绍锋,于明源,等.基于机器视觉的斜齿轮廓参数测量方法[J].福建理工大学学报,2024,22(06):549-553.[doi:10.3969/j.issn.2097-3853.2024.06.006]
 YI Simin,ZENG Shaofeng,YU Mingyuan,et al.Measurement method of helical gear profile parameters based on machine vision[J].Journal of Fujian University of Technology;,2024,22(06):549-553.[doi:10.3969/j.issn.2097-3853.2024.06.006]
点击复制

基于机器视觉的斜齿轮廓参数测量方法
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第22卷
期数:
2024年06期
页码:
549-553
栏目:
出版日期:
2024-12-25

文章信息/Info

Title:
Measurement method of helical gear profile parameters based on machine vision
作者:
易思敏曾绍锋于明源郭浩浩
福建理工大学机械与汽车工程学院
Author(s):
YI Simin ZENG Shaofeng YU Mingyuan GUO Haohao
School of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
斜齿轮机器视觉轮廓特征点
Keywords:
helical gearmachine visioncontour feature point
分类号:
TP391.4
DOI:
10.3969/j.issn.2097-3853.2024.06.006
文献标志码:
A
摘要:
针对采用机器视觉测量斜齿轮廓参数时斜齿螺旋角易造成端面图像阴影,从而导致测量精度低的问题,提出采用高分辨率双远心镜头和近距离背光光源的改进测量方案,并结合Otsu图像二值化处理方法,以获取理想的齿轮端面图像。同时,提出轮廓特征点法,获取齿轮中心与各齿牙质心相连线段与齿顶轮廓交点,以及相连线段同一方向旋转一定角度后与齿根轮廓交点,将获取的交点圆拟合实现齿轮参数测量。结果表明,所测量的绝对误差值在0.02 mm范围内,测量结果误差小。
Abstract:
In order to solve the problem that the helical angle of the helical gear is easy to produce a shadow of the end face image when measuring the contour parameters of the helical gear by machine vision, which leads to low measurement accuracy, an improved measurement scheme using high-resolution double telecentric lens and close-range backlight source is proposed, and the Otsu image binarization processing method is combined to obtain the ideal gear end face image. At the same time, the contour feature point method is proposed to obtain the intersection point between the line segment connected to the center of mass of the gear center and the tooth tip contour, and the intersection point between the connected line segment and the tooth root contour after rotating a certain angle in the same direction, and the obtained intersection point is used to realize gear parameter measurement by circle fitting. Experimental results show that the absolute error value of the measurement is within the range of 0.02 mm, and the error of the measurement result is small.

参考文献/References:

[1] 侯恩光. 基于机器视觉的直齿轮几何尺寸测量方法[J]. 机电技术,2020,43(6):27-30,43.[2] CHAI H X. Measurement method for geometric parameters of small module gears based on machine vision[J]. International Journal of Frontiers in Engineering Technology,2024,6(1):92-100.[3] 宋栓军,王启宇,贾秀海,等. 基于斜齿轮端面与侧面图像处理的螺旋角测量方法[J]. 西安工程大学学报,2021,35(3):81-85.[4] 饶承剑.基于机器视觉的斜齿轮参数检测方法研究[D].桂林:桂林电子科技大学,2023. [5] 金昭. 基于机器视觉的斜齿轮参数测量研究及应用[D]. 淄博:山东理工大学,2022.[6] 逯海滨. 基于机器视觉的齿轮几何参数检测方法研究[D]. 淄博:山东理工大学,2023.[7] 王筠翔,花海燕,朱广磊. 基于行为自适应的台钻主轴轴径视觉测量策略[J]. 机床与液压,2023,51(3):96-102.[8] 李忠虎,薛婉婷,吕鑫,等. 基于图像融合的风电塔筒边缘检测及提取方法[J]. 国外电子测量技术,2022,41(3):90-95.[9] TOMASI C,MANDUCHI R. Bilateral filtering for gray and color images[C]∥Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). Bombay,India. Narosa Publishing House,1998: 839-846.[10] 黄南海. 基于机器视觉的大尺寸工件圆孔测量系统的研究与设计[D]. 抚州:东华理工大学,2022.[11] 徐永亮,谢小辉. 基于多级优化的圆拟合算法[J]. 电子科技,2023,36(10):87-94.[12] 高志强,曾志强,杜文华,等. 基于机器视觉的尼龙齿轮检测研究[J]. 组合机床与自动化加工技术,2020(5):74-77.

相似文献/References:

[1]檀甫贵、邹复民、刘丽桑、李建兴.基于机器视觉的软包锂电池表面缺陷检测[J].福建理工大学学报,2020,18(03):267.[doi:10.3969/j.issn.1672-4348.2020.03.012]
 TAN Fugui,ZOU Fumin,LIU Lisang,et al.Surface defect detection of soft-pack lithium battery based on machine vision[J].Journal of Fujian University of Technology;,2020,18(06):267.[doi:10.3969/j.issn.1672-4348.2020.03.012]
[2]戴福全、刘路杰.基于视觉引导的机器人抓取分类系统设计[J].福建理工大学学报,2020,18(06):530.[doi:10.3969/j.issn.1672-4348.2020.06.004]
 DAI Fuquan,LIU Lujie.Design of vision-guided robotic grasping classification system[J].Journal of Fujian University of Technology;,2020,18(06):530.[doi:10.3969/j.issn.1672-4348.2020.06.004]
[3]李建兴、林华良、俞斌、陈炜、林晨煌、黄诗婷.基于机器视觉的汽车角窗玻璃混线检测算法[J].福建理工大学学报,2021,19(03):223.[doi:10.3969/j.issn.1672-4348.2021.03.004]
 LI Jianxing,LIN Hualiang,YU Bin,et al.Machine vision-based non-congeneric product detection algorithm for vehicle quarter glass[J].Journal of Fujian University of Technology;,2021,19(06):223.[doi:10.3969/j.issn.1672-4348.2021.03.004]
[4]李济泽,位威,张凯凯.基于机器视觉的养殖鱼摄食行为识别方法[J].福建理工大学学报,2022,20(04):378.[doi:10.3969/j.issn.1672-4348.2022.04.012]
 LI Jize,WEI Wei,ZHANG Kaikai.Recognition method of fish feeding behavior based on machine vision[J].Journal of Fujian University of Technology;,2022,20(06):378.[doi:10.3969/j.issn.1672-4348.2022.04.012]
[5]仓大健,吴选忠,李占福.基于R-Y通道冗余去除钢筋层阴影方法[J].福建理工大学学报,2022,20(04):391.[doi:10.3969/j.issn.1672-4348.2022.04.014]
 CANG Dajian,WU Xuanzhong,LI Zhanfu.Spatial ghosting elimination method of reinforcement layer based on R-Y channel redundancy removal[J].Journal of Fujian University of Technology;,2022,20(06):391.[doi:10.3969/j.issn.1672-4348.2022.04.014]
[6]刘佳鑫,孔令华,郑积仕,等.基于机器视觉的木材径级测量系统设计[J].福建理工大学学报,2022,20(06):607.[doi:10.3969/j.issn.1672-4348.2022.06.016]
 LIU Jiaxin,KONG Linghua,ZHENG Jishi,et al.Design of wood diameter classification system based on machine vision[J].Journal of Fujian University of Technology;,2022,20(06):607.[doi:10.3969/j.issn.1672-4348.2022.06.016]
[7]董世超,陈丙三,连长伟,等.基于机器视觉的烟梗长度测量方法[J].福建理工大学学报,2024,22(01):74.[doi:10.3969/j.issn.2097-3853.2024.01.011]
 DONG Shichao,CHEN Bingsan,LIAN Changwei,et al.Measurement method of tobacco stem length based on machine vision[J].Journal of Fujian University of Technology;,2024,22(06):74.[doi:10.3969/j.issn.2097-3853.2024.01.011]
[8]戴福全,池生烨.金刚石线表面缺陷视觉检测方法[J].福建理工大学学报,2024,22(03):267.[doi:10.3969/j.issn.2097-3853.2024.03.009]
 DAI Fuquan,CHI Shengye.Visual inspection method for surface defects of diamond wire[J].Journal of Fujian University of Technology;,2024,22(06):267.[doi:10.3969/j.issn.2097-3853.2024.03.009]
[9]黄荷,黄靖,廖佳祥.基于机器视觉的电力塔杆锈蚀程度检测[J].福建理工大学学报,2024,22(06):582.[doi:10.3969/j.issn.2097-3853.2024.06.011]
 HUANG He,HUANG Jing,LIAO Jiaxiang.Corrosion degree detection of power tower poles based on machine vision[J].Journal of Fujian University of Technology;,2024,22(06):582.[doi:10.3969/j.issn.2097-3853.2024.06.011]

更新日期/Last Update: 2024-12-25